organic liquid
Recently Published Documents


TOTAL DOCUMENTS

908
(FIVE YEARS 207)

H-INDEX

51
(FIVE YEARS 6)

Author(s):  
Manoel Raimundo dos Santos Jr. ◽  
Elinéia Castro Costa ◽  
Caio Campos Ferreira ◽  
Lucas Pinto Bernar ◽  
Marcilene Paiva da Silva ◽  
...  

In this work, the deoxygenation of organic liquid products (OLP) obtained by thermal catalytic cracking of palm oil at 450 °C, 1.0 atmosphere, with 10% (wt.) Na2CO3 as catalyst, in multistage countercurrent absorber columns using supercritical carbon dioxide (SC-CO2) as solvent, with Aspen-HYSYS process simulator was systematically investigated. In a previous study, the thermodynamic data basis and EOS modeling necessary to simulate the deoxygenation of OLP has been presented [Molecules 2021, 26, 4382. https://doi.org/10.3390/molecules26144382]. This work address a new flowsheet, consisting of 03 absorber columns, 10 expansions valves, 10 flash drums, 08 heat exchanges, 01 pressure pump, and 02 make-up of CO2, aiming to improve the deacidification of OLP. The simulation was performed at 333 K, 140 bar, and (S/F) = 17; 350 K, 140 bar, and (S/F) = 38; 333 K, 140 bar, and (S/F) = 25. The simulation shows that 81.49% of OLP could be recovered and the concentrations of hydrocarbons in the extracts of absorber-01 and absorber-02 were 96.95 and 92.78% (wt.) in solvent-free basis, while the bottom stream of absorber-03 was enriched in oxygenates compounds with concentrations up to 32.66% (wt.) in solvent-free basis, showing that organic liquid products (OLP) was deacidified and SC-CO2 was able to deacidify OLP and to obtain fractions with lower olefins content. The best deacidifying conditions was obtained at 333 K, 140 bar, and (S/F) = 17.


2022 ◽  
Vol 961 (1) ◽  
pp. 012055
Author(s):  
Bilal Ahmed Hbeeb ◽  
Ahmed Ali Akbar ◽  
Abdul Khaliq Fawzi

Abstract Assessment of the quality of minerals, especially heavy ones, in crude oil by identifying spectral lines is very important to determine the quality and specifications of crude oil and the following treatments in production of the lines. In this study heavy metals lines (HMs) found in crude oil extracted from Iraq south field were identified that are unique spectral lines by using the laser-induced plasma spectroscopy (LIPS – mechanism), which were analyzed later by spectrometer based on the principle of finger print. The optimum spectrum (analytical lines) of metals emitted from the crude oil plasma in air were selected and determined. By determining the optimization behavior for evaluation procedure, the important condition was laser spot number (scan area). Comparison was performed between the fundamental wavelength and harmonic generation (HG) used in the laser beam to determine the optimum spectrum and optical insulator to cover the selected sample at atmospheric air pressure and room temperature. The results obtained from the actual raw spectrum were determined to represent the emission lines without the influence of foreign light (no noise) using the optical isolator, and unique new analytical lines were identified when increasing the number of lasers points up to 5 points, and a balanced spectrum was determined with good absorption when using a basic wavelength of 1064 nm. Difficulties were presented due to the characteristics of the crude oil as organic liquid case. The optimum results obtained indicated that the LIPS technique is effective and a control technique to well identify the spectrum lines of the heavy metals (HMs) presented in the crude oil.


Author(s):  
Sunita Pathak ◽  
Sk. Jayabun ◽  
Arijit Sengupta

Ionic liquid based 'Green" separation methodology was used for drastic reduction in organic phase requirement, generation of organic liquid waste, time of analysis, personal exposure towards radiotoxic environment, less chances...


2022 ◽  
Author(s):  
Vivek Chandrakant Wakchaure ◽  
Sairam D. Veer ◽  
Aakash D. Nidhankar ◽  
Goudappagouda Patil ◽  
Rashmi Nayak ◽  
...  

Solvent-free organic liquids have been known for their excellent luminescent features. Hence, the recent developments in this area have marked them as potential emitters with high quantum yield and enhanced...


ChemTexts ◽  
2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Stephen Leharne

AbstractThe presence of water-immiscible organic liquids—commonly called non-aqueous phase liquids or NAPLs—in soils and groundwater, is a worldwide environmental problem. Typical examples of NAPLs include: petroleum products, organic solvents and organic liquid waste from laboratories and industry. The molecular components of NAPLs present in soils, rocks and groundwater are readily transferred to the vapour and aqueous phases. The extent to which they do this is determined by their solubility (which is quite limited) and vapour pressure (which can be quite high). These molecular components, once dispersed in the vapour phase or dissolved in the aqueous phase, can provide a long-term source of harm to biotic receptors. The object of this lecture text is to examine how we can assess the degree of harm using quantitative risk assessment and how NAPL contaminated environments can be restored through the use of chemical, biological and physical remediation technologies. Graphical abstract


2021 ◽  
Vol 9 (12) ◽  
pp. 2575
Author(s):  
Claire Bailey ◽  
Catherine Makison-Booth ◽  
Jayne Farrant ◽  
Alan Beswick ◽  
John Chewins ◽  
...  

When transferring highly infective patients to specialist hospitals, safe systems of work minimise the risk to healthcare staff. The EpiShuttle is a patient transport system that was developed to fit into an air ambulance. A validated decontamination procedure is required before the system can be adopted in the UK. Hydrogen peroxide (H2O2) vapour fumigation may offer better penetration of the inaccessible parts than the liquid disinfectant wiping that is currently suggested. To validate this, an EpiShuttle was fumigated in a sealed test chamber. Commercial bacterial spore indicators (BIs), alongside organic liquid suspensions and dried surface samples of MS2 bacteriophage (a safe virus surrogate), were placed in and around the EpiShuttle, for the purpose of evaluation. The complete kill of all of the BIs in the five test runs demonstrated the efficacy of the fumigation cycle. The log reduction of the MS2 that was dried on the coupons ranged from 2.66 to 4.50, but the log reduction of the MS2 that was in the organic liquids only ranged from 0.07 to 1.90, confirming the results of previous work. Fumigation with H2O2 alone may offer insufficient inactivation of viruses in liquid droplets, therefore a combination of fumigation and disinfectant surface wiping was proposed. Initial fumigation reducing contamination with minimal intervention allows disinfectant wipe cleaning to be completed more safely, with a second fumigation step inactivating the residual pathogens.


2021 ◽  
Author(s):  
Joshua Gibson ◽  
Sudarshan Narayanan ◽  
Jack Swallow ◽  
Pardeep Kumar-Thakur ◽  
Mauro Pasta ◽  
...  

The key charge transfer processes in energy storage devices occur at the electrode-electrolyte interface, which is typically buried making it challenging to access the interfacial chemistry. In the case of Li-ion batteries, metallic Li electrodes hold promise for increasing energy and power densities, and when used in conjunction with solid electrolytes (SEs) adverse safety implications associated with dendrite formation in organic liquid electrolytes can potentially be overcome. To better understand the stability of SEs when in contact with alkali metals and the reactions that occur, here we consider the deposition of thin (~10 nm) alkali metal films onto SE surfaces, that are thin enough that X-ray photoelectron spectroscopy can probe the buried electrode-electrolyte interface. We highlight the importance of in situ alkali metal deposition, by assessing the contaminant species that are present after glovebox handling and the use of ‘inert’ transfer devices. Consequently, we compare and contrast three available methods for in situ alkali-metal deposition; Li sputter deposition, Li evaporation, and Li plating induced by e− flood-gun irradiation. Studies on both a sulphide SE (Li6PS5Cl), and a single-layer graphene probe surface reveal that the more energetic Li deposition methods, such as sputtering, can induce surface damage and interfacial mixing that is not seen with thermal evaporation. This indicates that appropriate selection of the Li deposition method for in situ studies is required to observe representative behaviour, and the results of previous studies involving energetic deposition may warrant further evaluation.


2021 ◽  
pp. 112474
Author(s):  
Minglong Zhang ◽  
Ganesan Ramya ◽  
Kathirvel Brindhadevi ◽  
Ashraf Elfasakhany ◽  
Amany Salah Khalifa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document