Crossreaction of antibodies to the nine amino acid repeats of Plasmodium falciparum antigen 11.1 with human serum albumin

1992 ◽  
Vol 8 (8) ◽  
pp. 259
2018 ◽  
Vol 19 (10) ◽  
pp. 2868 ◽  
Author(s):  
Luiza Bertozo ◽  
Ernesto Tavares Neto ◽  
Leandro Oliveira ◽  
Valdecir Ximenes

Human serum albumin (HSA) is a target for reactive oxygen species (ROS), and alterations of its physiological functions caused by oxidation is a current issue. In this work, the amino-acid residues Trp-214 and Lys-199, which are located at site I of HSA, were experimentally and computationally oxidized, and the effect on the binding constant with phenylbutazone was measured. HSA was submitted to two mild oxidizing reagents, taurine monochloramine (Tau-NHCl) and taurine dibromamine (Tau-NBr2). The oxidation of Trp-214 provoked spectroscopic alterations in the protein which were consistent with the formation of N′-formylkynurenine. It was found that the oxidation of HSA by Tau-NBr2, but not by Tau-NHCl, provoked a significant increase in the association constant with phenylbutazone. The alterations of Trp-214 and Lys-199 were modeled and simulated by changing these residues using the putative oxidation products. Based on the Amber score function, the interaction energy was measured, and it showed that, while native HSA presented an interaction energy of −21.3 kJ/mol, HSA with Trp-214 altered to N′-formylkynurenine resulted in an energy of −28.4 kJ/mol, and HSA with Lys-199 altered to its carbonylated form resulted in an energy of −33.9 kJ/mol. In summary, these experimental and theoretical findings show that oxidative alterations of amino-acid residues at site I of HSA affect its binding efficacy.


2016 ◽  
Vol 52 (6) ◽  
pp. 754-765 ◽  
Author(s):  
Hiroko Setoyama ◽  
Motohiko Tanaka ◽  
Kohei Nagumo ◽  
Hideaki Naoe ◽  
Takehisa Watanabe ◽  
...  

2012 ◽  
Vol 10 (41) ◽  
pp. 8314 ◽  
Author(s):  
Ximin Zhou ◽  
Wenjuan Lü ◽  
Li Su ◽  
Yalei Dong ◽  
Qianfeng Li ◽  
...  

2007 ◽  
Vol 1154 (1-2) ◽  
pp. 240-249 ◽  
Author(s):  
Ana Tomašić ◽  
Branimir Bertoša ◽  
Sanja Tomić ◽  
Milan Šoškić ◽  
Volker Magnus

2002 ◽  
Vol 9 (1) ◽  
pp. 47-58 ◽  
Author(s):  
Krishna Harohalli ◽  
Charles E. Petersen ◽  
Chung-Eun Ha ◽  
Jimmy B. Feix ◽  
Nadhipuram V. Bhagavan

1971 ◽  
Vol 18 (3) ◽  
pp. 137-144 ◽  
Author(s):  
C.S. Liu ◽  
T. B. Shih ◽  
M.H. Hsin ◽  
R. Q. Blackwell

1979 ◽  
Vol 44 (5) ◽  
pp. 1657-1670 ◽  
Author(s):  
Ladislav Morávek ◽  
Mohamed Ali Saber ◽  
Bedřich Meloun

Human serum albumin was nitrated by an excess of tetranitromethane at pH 8.0. As shown by amino acid analysis, of the 18 tyrosine residues present in albumin about 7-7.5 residues remain unaltered, 9 residues are converted into 3-nitrotyrosine, and 1.2 residue into 3,5-dinitrotyrosine. The nitrated albumin was digested with cyanogen bromide to three fragments which comprise the whole original molecule. The individual fragments were converted into their S-sulfo derivatives and the latter digested with chymotrypsin or stepwise with trypsin and thermolysin. The yellow, nitrotyrosine-containing peptides were isolated from the digest and the positions of nitrated tyrosine residues in albumin thus located. Residues No 30, 148, 150, 161, 334, 341, 401, and 411 were identified as strongly nitrated and residues No 84, 138, 452, and 497 as medium nitrated. Residues No 140, 263, 319, 332, 353, and 367 either react weakly or were not found in nitrated form. Residue No 411 and partly also 161 were converted into 3,5-dinitrotyrosine. The accessibility of the individual tyrosine residues to the nitrating agent is discussed with respect to their positions in disulfide loops and hypothetic parts of the secondary structure of albumin.


FEBS Letters ◽  
1975 ◽  
Vol 58 (1-2) ◽  
pp. 134-137 ◽  
Author(s):  
B. Meloun ◽  
L. Morávek ◽  
V. Kostka

Sign in / Sign up

Export Citation Format

Share Document