Trypanosoma brucei brucei and high-density lipoproteins: Old and new thoughts on the identity and mechanism of the trypanocidal factor in human serum

1995 ◽  
Vol 11 (9) ◽  
pp. 348-352 ◽  
Author(s):  
P. Lorenz ◽  
B. Betschart ◽  
J.S. Owen
1996 ◽  
Vol 183 (3) ◽  
pp. 1023-1029 ◽  
Author(s):  
J Raper ◽  
V Nussenzweig ◽  
S Tomlinson

Natural immunity of humans to the cattle pathogen Trypanosoma brucei brucei has been attributed to the presence in normal human serum (NHS) of lytic factors for the parasites. We and others have shown that NHS contains two trypanolytic factors (herein termed TLF1 and TLF2) that can be separated by gel filtration. TLF1 copurifies with a subclass of high density lipoprotein (HDL), whereas TLF2 has a much higher molecular weight and does not appear to be a lipoprotein. We find that the trypanolytic activity of purified TLF1 is totally inhibited by exogenous haptoglobin (Hp) at concentrations (0.1 mg/ml) lower than those present in NHS (0.2-2 mg/ml). In contrast, exogenous Hp (up to 2.5 mg/ml) has no effect on the lytic activity of either NHS or isolated TLF2. Hp-depleted sera from patients with intravascular hemolysis is severalfold more trypanolytic than NHS. These sera contain only TLF1, and their lytic activity is totally abolished upon the addition of Hp (0.1 mg/ml). When NHS containing different Hp allotypes is fractionated by gel filtration, TLF1 activity is either revealed or remains masked, depending on whether it coelutes with Hp. Masked TLF1 activity in the column fractions is revealed if Hp is removed by density gradient ultracentrifugation. We conclude that endogenous Hp inhibits TLF1 activity, and that TLF2 is the main trypanolytic factor in NHS.


1965 ◽  
Vol 11 (5) ◽  
pp. 389-394 ◽  
Author(s):  
M. Barclay ◽  
O. Terebus-Kekish ◽  
V.P. Skipski ◽  
R.K. Barclay

2006 ◽  
Vol 5 (8) ◽  
pp. 1276-1286 ◽  
Author(s):  
Sara D. Faulkner ◽  
Monika W. Oli ◽  
Rudo Kieft ◽  
Laura Cotlin ◽  
Justin Widener ◽  
...  

ABSTRACT The host range of African trypanosomes is influenced by innate protective molecules in the blood of primates. A subfraction of human high-density lipoprotein (HDL) containing apolipoprotein A-I, apolipoprotein L-I, and haptoglobin-related protein is toxic to Trypanosoma brucei brucei but not the human sleeping sickness parasite Trypanosoma brucei rhodesiense. It is thought that T. b. rhodesiense evolved from a T. b. brucei-like ancestor and expresses a defense protein that ablates the antitrypanosomal activity of human HDL. To directly investigate this possibility, we developed an in vitro selection to generate human HDL-resistant T. b. brucei. Here we show that conversion of T. b. brucei from human HDL sensitive to resistant correlates with changes in the expression of the variant surface glycoprotein (VSG) and abolished uptake of the cytotoxic human HDLs. Complete transcriptome analysis of the HDL-susceptible and -resistant trypanosomes confirmed that VSG switching had occurred but failed to reveal the expression of other genes specifically associated with human HDL resistance, including the serum resistance-associated gene (SRA) of T. b. rhodesiense. In addition, we found that while the original active expression site was still utilized, expression of three expression site-associated genes (ESAG) was altered in the HDL-resistant trypanosomes. These findings demonstrate that resistance to human HDLs can be acquired by T. b. brucei.


Sign in / Sign up

Export Citation Format

Share Document