The stability of the modified plane Poiseuille flow in the presence of a transverse magnetic field

1996 ◽  
Vol 17 (6) ◽  
pp. 293-310 ◽  
Author(s):  
Masaki Takashima
1996 ◽  
Vol 14 (3) ◽  
pp. 511-518
Author(s):  
Yuri B. Alferov ◽  
Alexander P. Budnik

This paper presents the results of a theoretical investigation of a laser-supported detonation wave (LDW) in a transverse magnetic field. A 1D problem of a steady-state wavefront structure is considered. The magnetic structure of the LDW is determined. Specific attention is focused on the stability conditions of a shock wavefront. The value of the induced (downstream) electric field strength is obtained from numerical calculations. The possibility of direct conversion of laser radiation energy into electricity in optical discharge plasma moving across an external magnetic field is considered. Such a device could be used in the energy supply systems of space vehicles.


1998 ◽  
Vol 76 (12) ◽  
pp. 937-947
Author(s):  
M Takashima

The stability of combined plane Poiseuille and Couette flow of an electricallyconducting fluid under a transverse magnetic field is investigated using linear stability theory.In deriving the equations governing the stability, the so-called magnetic Stokes approximationis made using the fact that the magnetic Prandtl number Prm for most electrically conductingfluids is extremely small. The Chebyshev collocation method is adopted to obtain theeigenvalue equation, which is then solved numerically. The critical Reynolds number Rec,the critical wave number αc, and the critical wave speed cc are obtained for wide ranges ofthe Hartmann number Ha and the parameter k = U0 / (U0 + nu0), where U0 is the maximumvelocity of pure Couette flow and nu0 is the maximum velocity of pure Poiseuille flow. It isfound that a transverse magnetic field has both stabilizing and destabilizing effects on theflow depending on the value of k.PACS Nos. 47.20


2018 ◽  
Vol 17 (01) ◽  
pp. 57-84
Author(s):  
Xingwei Zhang ◽  
Guojing Zhang ◽  
Hai-Liang Li

In this paper, we consider the stability of three-dimensional compressible viscous fluid around the plane Couette flow in the presence of a uniform transverse magnetic field and show that the uniform transverse magnetic field has a stabilizing effect on the plane Couette flow. Namely, for a sufficiently large Hartmann number, the compressible viscous plane Couette flow is nonlinear stable for small Mach number and arbitrary Reynolds number so long as the initial perturbation is small enough.


Sign in / Sign up

Export Citation Format

Share Document