porous walls
Recently Published Documents


TOTAL DOCUMENTS

294
(FIVE YEARS 55)

H-INDEX

30
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Samantha A. Miller ◽  
Derek Mamrol ◽  
Joel J. Redmond ◽  
Karl Jantze ◽  
Carlo Scalo ◽  
...  

2021 ◽  
Vol 6 (8) ◽  
Author(s):  
Yongkai Chen ◽  
Carlo Scalo
Keyword(s):  

2021 ◽  
Vol 263 (2) ◽  
pp. 4863-4870
Author(s):  
Harshavardhan Ronge ◽  
Shankar Krishnan ◽  
Sripriya Ramamoorthy

In convective air-cooled heat sink applications with space constraints, corrugated geometries can be used as in-duct sound absorbing structures offering lower duct-flow resistance than other geometries such as block-shape, wedge-shape geometries. Sound wave propagation through this geometry is presented using a simple 1-D acoustic model. Using the model, acoustic performance of corrugated sample is evaluated in terms of its transmission loss in dB. Thermal resistance and pressure drop values are also reported and compared with acoustic performance as function of number of corrugations and length of corrugated sample. A rectangular corrugated geometry has alternate inlet and outlet channels separated by porous walls. Sound propagation across this arrangement is modelled by extending prior model from literature with similar geometries. Prior model by Allam and Åbom (2005) is highly symmetric about the channels and porous walls are modelled by simple steady flow resistance equation. In current work, appropriate considerations are taken into account for the configuration of corrugated geometries suitable to general heat sink applications and sound wave propagation through porous walls is predicted by using Johnson-Champoux-Allard (jca) model. The porous walls at ends of the geometry are modelled as in acoustically series-parallel network combinations. Further, effect of heat sink temperature on sound wave propagation is also explored using the model.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Muhammad Bilal ◽  
Hamna Arshad ◽  
Muhammad Ramzan ◽  
Zahir Shah ◽  
Poom Kumam

AbstractThe key objective of the present research is to examine the hybrid magnetohydrodynamics (MHD) nanofluid (Carbon-nanotubes and ferrous oxide–water) CNT–Fe3O4/H2 flow into a horizontal parallel channel with thermal radiation through squeezing and dilating porous walls. The parting motion is triggered by the porous walls of the channel. The fluid flow is time-dependent and laminar. The channel is asymmetric and the upper and lower walls are distinct in temperature and are porous. With the combination of nanoparticles of Fe3O4 and single and multi-wall carbon nanotubes, the hybrid nanofluid principle is exploited. By using the similarity transformation, the set of partial differential equations (PDEs) of this mathematical model, governed by momentum and energy equations, is reduced to corresponding ordinary differential equations (ODEs). A very simple numerical approach called the Runge–Kutta system of order four along with the shooting technique is used to achieve the solutions for regulating ODEs. MATLAB computing software is used to create temperature and velocity profile graphs for various emerging parameters. At the end of the manuscript, the main conclusions are summarized. Through different graphs, it is observed that hybrid-nanofluid has more prominent thermal enhancement than simple nanofluid. Further, the single-wall nanotubes have dominated impact on temperature than the multi-wall carbon nanotubes. From the calculations, it is also noted that Fe2O3–MWCNT–water has an average of 4.84% more rate of heat transfer than the Fe2O3–SWCNT–water. On the other hand, 8.27% more heat flow observed in Fe2O3–SWCNT–water than the simple nanofluid. Such study is very important in coolant circulation, inter-body fluid transportation, aerospace engineering, and industrial cleaning procedures, etc.


Sign in / Sign up

Export Citation Format

Share Document