Stability of the compressible viscous fluid around the plane Couette flow in the presence of a transverse uniform magnetic field

2018 ◽  
Vol 17 (01) ◽  
pp. 57-84
Author(s):  
Xingwei Zhang ◽  
Guojing Zhang ◽  
Hai-Liang Li

In this paper, we consider the stability of three-dimensional compressible viscous fluid around the plane Couette flow in the presence of a uniform transverse magnetic field and show that the uniform transverse magnetic field has a stabilizing effect on the plane Couette flow. Namely, for a sufficiently large Hartmann number, the compressible viscous plane Couette flow is nonlinear stable for small Mach number and arbitrary Reynolds number so long as the initial perturbation is small enough.

1998 ◽  
Vol 76 (12) ◽  
pp. 937-947
Author(s):  
M Takashima

The stability of combined plane Poiseuille and Couette flow of an electricallyconducting fluid under a transverse magnetic field is investigated using linear stability theory.In deriving the equations governing the stability, the so-called magnetic Stokes approximationis made using the fact that the magnetic Prandtl number Prm for most electrically conductingfluids is extremely small. The Chebyshev collocation method is adopted to obtain theeigenvalue equation, which is then solved numerically. The critical Reynolds number Rec,the critical wave number αc, and the critical wave speed cc are obtained for wide ranges ofthe Hartmann number Ha and the parameter k = U0 / (U0 + nu0), where U0 is the maximumvelocity of pure Couette flow and nu0 is the maximum velocity of pure Poiseuille flow. It isfound that a transverse magnetic field has both stabilizing and destabilizing effects on theflow depending on the value of k.PACS Nos. 47.20


2010 ◽  
Vol 7 (3) ◽  
pp. 169-176 ◽  
Author(s):  
S. K. Pandey ◽  
Dharmendra Tripathi

The paper presents an analytical investigation of the peristaltic transport of a viscous fluid under the influence of a magnetic field through a tube of finite length in a dimensionless form. The expressions of pressure gradient, volume flow rate, average volume flow rate and local wall shear stress have been obtained. The effects of the transverse magnetic field and electrical conductivity (i.e. the Hartmann number) on the mechanical efficiency of a peristaltic pump have also been studied. The reflux phenomenon is also investigated. It is concluded, on the basis of the pressure distribution along the tubular length and pumping efficiency, that if the transverse magnetic field and the electric conductivity increase, the pumping machinery exerts more pressure for pushing the fluid forward. There is a linear relation between the averaged flow rate and the pressure applied across one wavelength that can restrain the flow due to peristalsis. It is found that there is a particular value of the averaged flow rate corresponding to a particular pressure that does not depend on the Hartmann number. Naming these values ‘critical values’, it is concluded that the pressure required for checking the flow increases with the Hartmann number above the critical value and decreases with it below the critical value. It is also inferred that magneto-hydrodynamic parameters make the fluid more prone to flow reversal. The conclusion applied to oesophageal swallowing reveals that normal water is easier to swallow than saline water. The latter is more prone to flow reversal. A significant difference between the propagation of the integral and non-integral number of waves along the tube is that pressure peaks are identical in the former and different in the latter cases.


Sign in / Sign up

Export Citation Format

Share Document