Effects of deprolorphin, a casomorphin analog, on hippocampal CA1 field potentials in vitro

Peptides ◽  
1983 ◽  
Vol 4 (3) ◽  
pp. 283-286 ◽  
Author(s):  
Klaus G. Reymann ◽  
Aisa N. Chepkova ◽  
Hansjürgen Matthies
Hippocampus ◽  
2003 ◽  
Vol 13 (8) ◽  
pp. 873-878 ◽  
Author(s):  
Yiwen Zheng ◽  
D. Steven Kerr ◽  
Cynthia L. Darlington ◽  
Paul F. Smith

1998 ◽  
Vol 188 (4) ◽  
pp. 635-649 ◽  
Author(s):  
Tong-Chun Wen ◽  
Junya Tanaka ◽  
Hui Peng ◽  
Junzo Desaki ◽  
Seiji Matsuda ◽  
...  

In the central nervous system, interleukin (IL)-3 has been shown to exert a trophic action only on septal cholinergic neurons in vitro and in vivo, but a widespread distribution of IL-3 receptor (IL-3R) in the brain does not conform to such a selective central action of the ligand. Moreover, the mechanism(s) underlying the neurotrophic action of IL-3 has not been elucidated, although an erythroleukemic cell line is known to enter apoptosis after IL-3 starvation possibly due to a rapid decrease in Bcl-2 expression. This in vivo study focused on whether IL-3 rescued noncholinergic hippocampal neurons from lethal ischemic damage by modulating the expression of Bcl-xL, a Bcl-2 family protein produced in the mature brain. 7-d IL-3 infusion into the lateral ventricle of gerbils with transient forebrain ischemia prevented significantly hippocampal CA1 neuron death and ischemia-induced learning disability. TUNEL (terminal deoxynucleotidyltransferase–mediated 2′-deoxyuridine 5′-triphosphate-biotin nick end labeling) staining revealed that IL-3 infusion caused a significant reduction in the number of CA1 neurons exhibiting DNA fragmentation 7 d after ischemia. The neuroprotective action of IL-3 appeared to be mediated by a postischemic transient upregulation of the IL-3R α subunit in the hippocampal CA1 field where IL-3Rα was barely detectable under normal conditions. In situ hybridization histochemistry and immunoblot analysis demonstrated that Bcl-xL mRNA expression, even though upregulated transiently in CA1 pyramidal neurons after ischemia, did not lead to the production of Bcl-xL protein in ischemic gerbils infused with vehicle. However, IL-3 infusion prevented the decrease in Bcl-xL protein expression in the CA1 field of ischemic gerbils. Subsequent in vitro experiments showed that IL-3 induced the expression of Bcl-xL mRNA and protein in cultured neurons with IL-3Rα and attenuated neuronal damage caused by a free radical–producing agent FeSO4. These findings suggest that IL-3 prevents delayed neuronal death in the hippocampal CA1 field through a receptor-mediated expression of Bcl-xL protein, which is known to facilitate neuron survival. Since IL-3Rα in the hippocampal CA1 region, even though upregulated in response to ischemic insult, is much less intensely expressed than that in the CA3 region tolerant to ischemia, the paucity of IL-3R interacting with the ligand may account for the vulnerability of CA1 neurons to ischemia.


2019 ◽  
Vol 16 (7) ◽  
pp. 637-644 ◽  
Author(s):  
Hadas Han ◽  
Sara Eyal ◽  
Emma Portnoy ◽  
Aniv Mann ◽  
Miriam Shmuel ◽  
...  

Background: Inflammation is a hallmark of epileptogenic brain tissue. Previously, we have shown that inflammation in epilepsy can be delineated using systemically-injected fluorescent and magnetite- laden nanoparticles. Suggested mechanisms included distribution of free nanoparticles across a compromised blood-brain barrier or their transfer by monocytes that infiltrate the epileptic brain. Objective: In the current study, we evaluated monocytes as vehicles that deliver nanoparticles into the epileptic brain. We also assessed the effect of epilepsy on the systemic distribution of nanoparticleloaded monocytes. Methods: The in vitro uptake of 300-nm nanoparticles labeled with magnetite and BODIPY (for optical imaging) was evaluated using rat monocytes and fluorescence detection. For in vivo studies we used the rat lithium-pilocarpine model of temporal lobe epilepsy. In vivo nanoparticle distribution was evaluated using immunohistochemistry. Results: 89% of nanoparticle loading into rat monocytes was accomplished within 8 hours, enabling overnight nanoparticle loading ex vivo. The dose-normalized distribution of nanoparticle-loaded monocytes into the hippocampal CA1 and dentate gyrus of rats with spontaneous seizures was 176-fold and 380-fold higher compared to the free nanoparticles (p<0.05). Seizures were associated with greater nanoparticle accumulation within the liver and the spleen (p<0.05). Conclusion: Nanoparticle-loaded monocytes are attracted to epileptogenic brain tissue and may be used for labeling or targeting it, while significantly reducing the systemic dose of potentially toxic compounds. The effect of seizures on monocyte biodistribution should be further explored to better understand the systemic effects of epilepsy.


2009 ◽  
Vol 148 (3) ◽  
pp. 416-418 ◽  
Author(s):  
O. O. Sokolova ◽  
M. B. Shtark ◽  
P. D. Lisachev ◽  
V. O. Pustyl’nyak ◽  
I. V. Pan

2007 ◽  
Vol 105 (4) ◽  
pp. 1006-1011 ◽  
Author(s):  
Kaori Tachibana ◽  
Koichi Takita ◽  
Toshikazu Hashimoto ◽  
Machiko Matsumoto ◽  
Mitsuhiro Yoshioka ◽  
...  

1998 ◽  
Vol 79 (3) ◽  
pp. 1592-1596 ◽  
Author(s):  
L. Stan Leung ◽  
Hui-Wen Yu

Leung, L. Stan and Hui-Wen Yu. Theta-frequency resonance in hippocampal CA1 neurons in vitro demonstrated by sinusoidal current injection. J. Neurophysiol. 79: 1592–1596, 1998. Sinusoidal currents of various frequencies were injected into hippocampal CA1 neurons in vitro, and the membrane potential responses were analyzed by cross power spectral analysis. Sinusoidal currents induced a maximal (resonant) response at a theta frequency (3–10 Hz) in slightly depolarized neurons. As predicted by linear systems theory, the resonant frequency was about the same as the natural (spontaneous) oscillation frequency. However, in some cases, the resonant frequency was higher than the spontaneous oscillation frequency, or resonance was found in the absence of spontaneous oscillations. The sharpness of the resonance ( Q), measured by the peak frequency divided by the half-peak power bandwidth, increased from a mean of 0.44 at rest to 0.83 during a mean depolarization of 6.5 mV. The phase of the driven oscillations changed most rapidly near the resonant frequency, and it shifted about 90° over the half-peak bandwidth of 8.4 Hz. Similar results were found using a sinusoidal function of slowly changing frequency as the input. Sinusoidal currents of peak-to-peak intensity of >100 pA may evoke nonlinear responses characterized by second and higher harmonics. The theta-frequency resonance in hippocampal neurons in vitro suggests that the same voltage-dependent phenomenon may be important in enhancing a theta-frequency response when hippocampal neurons are driven by medial septal or other inputs in vivo.


1991 ◽  
Vol 113 (3) ◽  
pp. 373-377 ◽  
Author(s):  
B.W. Leonard ◽  
C.A. Barnes ◽  
G. Rao ◽  
T. Heissenbuttel ◽  
B.L. McNaughton

2018 ◽  
Author(s):  
Zeinab Golgooni ◽  
Sara Mirsadeghi ◽  
Mahdieh Soleymani Baghshah ◽  
Pedram Ataee ◽  
Hossein Baharvand ◽  
...  

AbstractAimAn early characterization of drug-induced cardiotoxicity may be possible by combining comprehensive in vitro pro-arrhythmia assay and deep learning techniques. The goal of this study was to develop a deep learning method to automatically detect irregular beating rhythm as well as abnormal waveforms of field potentials in an in vitro cardiotoxicity assay using human pluripotent stem cell (hPSC) derived cardiomyocytes and multi-electrode array (MEA) system.Methods and ResultsWe included field potential waveforms from 380 experiments which obtained by application of some cardioactive drugs on healthy and/or patient-specific induced pluripotent stem cells derived cardiomyocytes (iPSC-CM). We employed convolutional and recurrent neural networks, in order to develop a new method for automatic classification of field potential recordings without using any hand-engineered features. In the proposed method, a preparation phase was initially applied to split 60-second long recordings into a series of 5-second long windows. Thereafter, the classification phase comprising of two main steps was designed. In the first step, 5-second long windows were classified using a designated convolutional neural network (CNN). In the second step, the results of 5-second long window assessments were used as the input sequence to a recurrent neural network (RNN). The output was then compared to electrophysiologist-level arrhythmia (irregularity or abnormal waveforms) detection, resulting in 0.84 accuracy, 0.84 sensitivity, 0.85 specificity, and 0.88 precision.ConclusionA novel deep learning approach based on a two-step CNN-RNN method can be used for automated analysis of “irregularity or abnormal waveforms” in an in vitro model of cardiotoxicity experiments.


Sign in / Sign up

Export Citation Format

Share Document