The influence of postmortem delay on evoked hippocampal field potentials in the in vitro slice preparation

1991 ◽  
Vol 113 (3) ◽  
pp. 373-377 ◽  
Author(s):  
B.W. Leonard ◽  
C.A. Barnes ◽  
G. Rao ◽  
T. Heissenbuttel ◽  
B.L. McNaughton
2005 ◽  
Vol 93 (4) ◽  
pp. 2302-2317 ◽  
Author(s):  
Chiping Wu ◽  
Wah Ping Luk ◽  
Jesse Gillis ◽  
Frances Skinner ◽  
Liang Zhang

Rodent hippocampal slices of ≤0.5 mm thickness have been widely used as a convenient in vitro model since the 1970s. However, spontaneous population rhythmic activities do not consistently occur in this preparation due to limited network connectivity. To overcome this limitation, we develop a novel slice preparation of 1 mm thickness from adult mouse hippocampus by separating dentate gyrus from CA3/CA1 areas but preserving dentate–CA3-CA1 connectivity. While superfused in vitro at 32 or 37°C, the thick slice exhibits robust spontaneous network rhythms of 1–4 Hz that originate from the CA3 area. Via assessing tissue O2, K+, pH, synaptic, and single-cell activities of superfused thick slices, we verify that these spontaneous rhythms are not a consequence of hypoxia and nonspecific experimental artifacts. We suggest that the thick slice contains a unitary circuitry sufficient to generate intrinsic hippocampal network rhythms and this preparation is suitable for exploring the fundamental properties and plasticity of a functionally defined hippocampal “lamella” in vitro.


1994 ◽  
Vol 191 (1) ◽  
pp. 141-153 ◽  
Author(s):  
C Doll ◽  
P Hochachka ◽  
S Hand

In previous papers, we have examined turtle cortical neurons in vitro for mechanisms of anoxic metabolic depression ('channel arrest' and changes in electrical parameters). Negative results prompted the current study with the aim of examining more closely the energy profile and metabolism of turtle cortical slices. Calorimetry is used to measure heat dissipation during normoxia and nitrogen perfusion (120 min) and the results are converted into an ATP utilization rate. These indicate that the control rate of ATP utilization (1.72 µmol ATP g-1 min-1) agrees closely with in vivo whole-brain metabolic measurements. Both nitrogen perfusion and pharmacologically induced anoxic (cyanide+N2) groups depressed heat dissipation considerably compared with the control value (nitrogen 37 %; pharmacological anoxia 49 %). The resulting ATP utilization estimates indicate metabolic depressions of 30 % (nitrogen) and 42 % (pharmacological anoxia). The slice preparation did not exhibit a change in any measured adenylate parameter for up to 120 min of anoxia or pharmacological anoxia. Significant changes did occur in [ADP], ATP/ADP ratio and energy charge after 240 min of exposure to anoxic conditions. These results support the idea that the turtle cortical slice preparation has a profound resistance to anoxia, with both nitrogen perfusion and pharmacological anoxia causing a rapid decline in heat dissipation and metabolism.


2018 ◽  
Author(s):  
Zeinab Golgooni ◽  
Sara Mirsadeghi ◽  
Mahdieh Soleymani Baghshah ◽  
Pedram Ataee ◽  
Hossein Baharvand ◽  
...  

AbstractAimAn early characterization of drug-induced cardiotoxicity may be possible by combining comprehensive in vitro pro-arrhythmia assay and deep learning techniques. The goal of this study was to develop a deep learning method to automatically detect irregular beating rhythm as well as abnormal waveforms of field potentials in an in vitro cardiotoxicity assay using human pluripotent stem cell (hPSC) derived cardiomyocytes and multi-electrode array (MEA) system.Methods and ResultsWe included field potential waveforms from 380 experiments which obtained by application of some cardioactive drugs on healthy and/or patient-specific induced pluripotent stem cells derived cardiomyocytes (iPSC-CM). We employed convolutional and recurrent neural networks, in order to develop a new method for automatic classification of field potential recordings without using any hand-engineered features. In the proposed method, a preparation phase was initially applied to split 60-second long recordings into a series of 5-second long windows. Thereafter, the classification phase comprising of two main steps was designed. In the first step, 5-second long windows were classified using a designated convolutional neural network (CNN). In the second step, the results of 5-second long window assessments were used as the input sequence to a recurrent neural network (RNN). The output was then compared to electrophysiologist-level arrhythmia (irregularity or abnormal waveforms) detection, resulting in 0.84 accuracy, 0.84 sensitivity, 0.85 specificity, and 0.88 precision.ConclusionA novel deep learning approach based on a two-step CNN-RNN method can be used for automated analysis of “irregularity or abnormal waveforms” in an in vitro model of cardiotoxicity experiments.


1994 ◽  
Vol 72 (5) ◽  
pp. 2246-2256 ◽  
Author(s):  
J. Flores-Hernandez ◽  
E. Galarraga ◽  
J. C. Pineda ◽  
J. Bargas

1. Synaptic potentials induced by 4-aminopyridine (4-AP) were recorded intracellularly from rat neostriatal neurons in an in vitro slice preparation. EC50 for this 4-AP action was approximately 120 microM. The threshold for activation of synaptic potentials was 5 microM. 2. 4-AP-induced synaptic potentials appeared stochastically. Most were blocked by 1 microM tetrodotoxin or 400 microM Cd2+. Therefore they reflect a release of neurotransmitters dependent on both Ca2+ entry to the terminals and action potential firing. 3. Bicuculline (BIC) (< or = 10 microM), a gamma-aminobuturic acid-A (GABAA) antagonist, blocked about half of the 4-AP-induced synaptic potentials. This suggests that intrinsic inhibitory connections within the neostriatum are activated by 4-AP administration. 4. 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; < or = 10 microM) plus D-2-amino-5-phosphonovaleric acid (D-APV; < or = 100 microM) blocked most of the BIC-resistant 4-AP-induced synaptic potentials. This suggests that 4-AP induced release of glutamate (GLU) from extrinsic glutamatergic afferents. As most glutamatergic afferents are extrinsic, these afferents then would be able to fire spikes and release transmitter for several hours after they are cut from their somata. 5. If CNQX plus D-APV were administered before BIC, neostriatal neurons responded in different ways. In one half of the neurons, all induced synaptic potentials were blocked. This suggests that most GABAergic intrinsic connections between neostriatal neurons are activated indirectly by 4-AP. 4-AP would first activate extrinsic glutamatergic afferents and these in turn would activate GABAergic intrinsic neurons and connections. 6. In the remaining half of the recorded neurons, administration of CNQX plus D-APV blocked most, but not all of the 4-AP-induced synaptic potentials. The synaptic potentials that remained had a characteristic pattern: they were high amplitude, rhythmic, bursts of synaptic potentials. They were blocked by BIC (5 microM) but not by mecamylamine (> 10 microM). This suggests that these bursts of synaptic potentials were GABAergic and generated by intrinsic neurons. Therefore these neurons would not innervate all neostriatal neurons equally but just a subset of them. 7. Records from an identified aspiny neostriatal interneuron, obtained from the same preparation, are shown. This interneuron fired in bursts and its morphologically and physiologically similar to the recently described, fast spiking, parvalbumin immunoreactive, GABAergic, aspiny interneuron is functional in the slice preparation.(ABSTRACT TRUNCATED AT 400 WORDS)


1988 ◽  
Vol 59 (5) ◽  
pp. 1476-1496 ◽  
Author(s):  
R. S. Jones ◽  
U. Heinemann

1. Extracellular recordings were made from slices of hippocampus plus parahippocampal regions maintained in vitro. Field potentials, recorded in the entorhinal cortex after stimulation in the subiculum, resembled those observed in vivo. 2. Washout of magnesium from the slices resulted in paroxysmal events which resembled those occurring during sustained seizures in vivo. These events were greatest in amplitude and duration in layers IV/V of the medial entorhinal cortex and could occur both spontaneously and in response to subicular stimulation. Spontaneous seizure-like events were not prevented by severing the connections between the hippocampus and entorhinal cortex, but much smaller and shorter events occurring in the dentate gyrus were stopped by this manipulation. Both spontaneous and evoked paroxysmal events were blocked by perfusion with the N-methyl-D-aspartate (NMDA) receptor antagonist, DL-2-amino-5-phosphonovalerate (2-AP5). 3. Neurons in layers IV/V were characterized by intracellular recording. Injection of depolarizing current in most cells evoked a train of nondecrementing action potentials with only weak spike frequency accommodation and little or no posttrain after hyperpolarization. 4. A small number of cells displayed burst response when depolarized by positive current. The burst consisted of a slow depolarization with superimposed action potentials which decreased in amplitude and increased in duration during the discharge. The burst was terminated by a strong after hyperpolarization and thereafter, during prolonged current pulses a train of nondecrementing spikes occurred. The burst response remained if the cell was held at hyperpolarized levels but was inactivated by holding the cell at a depolarized level. 5. Depolarizing synaptic potentials could be evoked by stimulation in the subiculum. A delayed and prolonged depolarization clearly decremented with membrane hyperpolarization and, occasionally, increased with depolarization. 6. Washout of magnesium from the slices resulted in an enhancement of the late depolarization and a reversal of its voltage dependence. Eventually a single shock to the subiculum evoked a large all-or-none paroxysmal depolarization associated with a massive increase in membrane conductance. Similar events occurred spontaneously in all cells tested. The paroxysmal depolarizations, both spontaneous and evoked, were rapidly blocked by 2-AP5. 7. It is concluded that medial entorhinal cortical cells possess several intrinsic and synaptic properties which confer an extreme susceptibility to generation of sustained seizure activity.(ABSTRACT TRUNCATED AT 400 WORDS)


Peptides ◽  
1983 ◽  
Vol 4 (3) ◽  
pp. 283-286 ◽  
Author(s):  
Klaus G. Reymann ◽  
Aisa N. Chepkova ◽  
Hansjürgen Matthies

Hippocampus ◽  
2003 ◽  
Vol 13 (8) ◽  
pp. 873-878 ◽  
Author(s):  
Yiwen Zheng ◽  
D. Steven Kerr ◽  
Cynthia L. Darlington ◽  
Paul F. Smith

Sign in / Sign up

Export Citation Format

Share Document