High concentrations of cholecystokinin octapeptide suppress protein kinase C activity in guinea pig pancreatic acini

Peptides ◽  
1996 ◽  
Vol 17 (6) ◽  
pp. 917-925 ◽  
Author(s):  
Toshiyuki Kimura ◽  
Toyohiko Honda ◽  
Tatsuya Higashi ◽  
Junji Konishi
1988 ◽  
Vol 254 (2) ◽  
pp. G242-G248 ◽  
Author(s):  
C. K. Sung ◽  
S. R. Hootman ◽  
E. L. Stuenkel ◽  
C. Kuroiwa ◽  
J. A. Williams

Pretreatment of guinea pig pancreatic acini with the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) induced a time- and concentration-dependent down-regulation of protein kinase C. In control acini almost all of the protein kinase C activity was present in a cytosolic fraction. Incubation with TPA initially shifted protein kinase C activity to a particular fraction which then disappeared over the following 24-h incubation with TPA. To study the role of protein kinase C in stimulus-secretion coupling, acini were pretreated with TPA and then amylase release was studied in response to various secretagogues. Preincubation of acini with TPA led to a time- and concentration-dependent decrease in TPA-stimulated amylase release that correlated with protein kinase C downregulation. Preincubation of acini with 1 microM TPA for 24 h, resulting in complete loss of protein kinase C activity, abolished the secretory effect of subsequently added TPA. By contrast, the secretory effects of cholecystokinin octapeptide (CCK-8) and carbamylcholine chloride (CCh) were only inhibited by 44 and 34%, respectively, and amylase release stimulated by the Ca2+ ionophore A23187 and an adenosine 3',5'-cyclic monophosphate-mediated agonist, vasoactive intestinal peptide, was unaffected. Dose-response curves for CCK-8- or CCh-stimulated amylase release in TPA-pretreated acini revealed attenuation of both maximal efficacy and sensitivity. However, the CCh-stimulated intracellular Ca2+ increase as determined by use of the fluorescent probe fura-2 was not affected by the long-term TPA pretreatment of acini. This study strongly suggests that both protein kinase C and intracellular Ca2+ play a significant role in CCK-8- and CCh-stimulated amylase release.


1989 ◽  
Vol 257 (4) ◽  
pp. G548-G553 ◽  
Author(s):  
T. B. Verme ◽  
R. T. Velarde ◽  
R. M. Cunningham ◽  
S. R. Hootman

The effects of staurosporine, a recently isolated microbial alkaloid, on amylase secretion and protein kinase C activity of guinea pig pancreatic acini were investigated. Staurosporine at a concentration of 1 microM completely inhibited both acinar protein kinase C activity (IC50 = 5.5 +/- 1.4 nM) and amylase secretion induced by the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) (IC50 = 4.1 +/- 0.4 nM). At this concentration, staurosporine reduced amylase secretion elicited by maximally effective concentrations of carbachol and cholecystokinin by approximately 50% but did not appreciably alter the potencies of the two secretagogues. In the presence of staurosporine, amylase secretion induced by carbachol was linear for at least 60 min. Staurosporine had no effect on amylase release elicited by the Ca2+ ionophore A23187. It did, however, inhibit secretion induced by vasoactive intestinal peptide, although with a reduced potency relative to its effects on amylase release stimulated by TPA, carbachol, and cholecystokinin (IC50 = 34 +/- 17 nM). These results indicate that staurosporine is a potent inhibitor of protein kinase C activity in pancreatic acini and that protein kinase C has an important role as an intracellular mediator of digestive enzyme secretion induced by cholecystokinin and carbachol in the acinar cell. In addition, a separate staurosporine-insensitive coupling pathway, most likely involving Ca2+, appears to be equally important and can maintain long-term secretion in the absence of functional protein kinase C activity.


1988 ◽  
Vol 255 (1) ◽  
pp. G33-G39 ◽  
Author(s):  
R. Bruzzone ◽  
R. Regazzi ◽  
C. B. Wollheim

We investigated the relationships between changes in cytosolic free Ca2+ ([Ca2+]i) and amylase secretion in dispersed rat pancreatic acini. Although 10 pM caerulein did not raise [Ca2+]i, higher concentrations (1 nM) of the peptide elicited a prompt, marked, but transient (2-3 min) elevation of [Ca2+]i. Both concentrations of caerulein caused an almost identical release of amylase over a 30-min period. To investigate the mechanism(s) underlying Ca2+-independent secretion, we measured the effect of the secretagogue on protein kinase C activity and found that both caerulein concentrations caused a significant translocation of protein kinase C from the cytosolic to the microsomal fraction. Because 1 nM caerulein induced a greater enzyme secretion than 10 pM caerulein during the first 2-5 min of stimulation, we explored further the role of [Ca2+]i transients during the first minutes of secretion. Addition of ionomycin in the presence of 10 pM caerulein resulted in a rise in [Ca2+]i and enhanced secretion as a result of caerulein in a near additive fashion during the first 2 min of stimulation. Second, we pretreated acini for 5 min with 1 microM 12-O-tetradecanoylphorbol-13-acetate. This maneuver inhibited both caerulein-induced inositol trisphosphate formation and [Ca2+]i elevation. These findings were paralleled by a similar inhibition of caerulein-stimulated amylase release only during the first 5 min of secretion. These results indicate that 1) caerulein can stimulate amylase secretion independently of a concomitant [Ca2+]i rise, possibly by activation of protein kinase C, and 2) an elevation of [Ca2+]i serves as a trigger to enhance amylase release only during the initial phase of secretion.


1990 ◽  
Vol 122 (3) ◽  
pp. 403-408
Author(s):  
Ph. Touraine ◽  
P. Birman ◽  
F. Bai-Grenier ◽  
C. Dubray ◽  
F. Peillon ◽  
...  

Abstract In order to investigate whether a calcium channel blocker could modulate the protein kinase C activity in normal and estradiol pretreated rat pituitary, female Wistar rats were treated or not (controls) with ± PN 200-110 (3 mg · kg−1 · day−1, sc) for 8 days or with estradiol cervical implants for 8 or 15 days, alone or in combination with PN 200-110 the last 8 days. Estradiol treatment induced a significant increase in plasma prolactin levels and pituitary weight. PN 200-110 administered to normal rats did not modify these parameters, whereas it reduced the effects of the 15 days estradiol treatment on prolactin levels (53.1 ± 4.9 vs 95.0 ±9.1 μg/l, p<0.0001) and pituitary weight (19.9 ± 0.4 vs 23.0 ± 0.6 mg, p <0.001), to values statistically comparable to those measured after 8 days of estradiol treatment. PN 200-110 alone did not induce any change in protein kinase C activity as compared with controls. In contrast, PN 200-110 treatment significantly counteracted the large increase in soluble activity and the decrease in the particulate one induced by estradiol between day 8 and day 15. We conclude that PN 200-110 opposed the stimulatory effects of chronic in vivo estradiol treatment on plasma prolactin levels and pituitary weight and that this regulation was related to a concomitant modulation of the protein kinase C activity.


1990 ◽  
Vol 2 (10) ◽  
pp. 333-338 ◽  
Author(s):  
Pascal Breton ◽  
Amha Asseffa ◽  
Krzysztof Grzegorzewski ◽  
Steven K. Akiyama ◽  
Sandra L. White ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document