murine peritoneal macrophages
Recently Published Documents


TOTAL DOCUMENTS

498
(FIVE YEARS 18)

H-INDEX

43
(FIVE YEARS 2)

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259008
Author(s):  
Leandro da Costa Clementino ◽  
Guilherme Felipe Santos Fernandes ◽  
Igor Muccilo Prokopczyk ◽  
Wilquer Castro Laurindo ◽  
Danyelle Toyama ◽  
...  

Leishmaniasis is a neglected disease that affects 12 million people living mainly in developing countries. Herein, 24 new N-oxide-containing compounds were synthesized followed by in vitro and in vivo evaluation of their antileishmanial activity. Compound 4f, a furoxan derivative, was particularly remarkable in this regard, with EC50 value of 3.6 μM against L. infantum amastigote forms and CC50 value superior to 500 μM against murine peritoneal macrophages. In vitro studies suggested that 4f may act by a dual effect, by releasing nitric oxide after biotransformation and by inhibiting cysteine protease CPB (IC50: 4.5 μM). In vivo studies using an acute model of infection showed that compound 4f at 7.7 mg/Kg reduced ~90% of parasite burden in the liver and spleen of L. infantum-infected BALB/c mice. Altogether, these outcomes highlight furoxan 4f as a promising compound for further evaluation as an antileishmanial agent.


Author(s):  
Guili Yu ◽  
Jinxin Wang ◽  
Wei Zhang ◽  
Qiankun Yang ◽  
Gang Liu ◽  
...  

Abstract Vibrio harveyi, an important zoonotic pathogen, can infect wounds and cause inflammatory response. Understanding the inflammatory response pathways could facilitate the exploration of molecular mechanisms for treating V. harveyi infection. NLR family pyrin domain-containing 3 (NLRP3) inflammasome is involved in the interaction between hosts and pathogenic microorganisms and could be sensed by various pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs). Nonetheless, the function of NLRP3 inflammasome in V. harveyi infection remains unclear. In the present study, we established a V. harveyi infection model using murine peritoneal macrophages (PMs). Various techniques, including western blot analysis, enzyme-linked immunosorbent assay (ELISA), RT-qPCR, immunofluorescence, and inhibition assays, were used to explore the molecular mechanism of V. harveyi-induced inflammation. The results showed that many inflammatory cytokines participated in V. harveyi infection, with interleukin (IL)-1β being the most abundant. Pan-caspase inhibitor pretreatment significantly decreased the secretion of IL-1β in murine PMs. Moreover, the identification of V. harveyi involved a large number of NLR molecules, especially the NLRP3 receptor, and further studies revealed that NLPR3 inflammasome was activated by V. harveyi infection, as evidenced by puncta-like NLRP3 surrounding cell nuclear, ASC specks in the nucleus and cytoplasm, and ASC oligomerization. Inhibition of NLRP3 inflammasome impaired the release of mature IL-1β in V. harveyi-infected murine PMs. Furthermore, blocking the secretion of mature IL-1β could markedly decrease the release of other proinflammatory cytokines, including IL-6, IL-12, and tumor necrosis factor-α. Overall, these data indicated that NLRP3 inflammasome was activated in response to V. harveyi infection and enhanced inflammatory response by promoting IL-1β secretion in murine PMs.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lujie Yang ◽  
Tianqi Gong ◽  
Huali Shen ◽  
Jiangnan Pei ◽  
Lei Zhang ◽  
...  

Macrophages are important immune cells that participate in both innate and adaptive immune responses, such as phagocytosis, recognition of molecular patterns, and activation of the immune response. In this study, murine peritoneal macrophages were isolated and then activated by LPS, HSV and VSV. Integrative proteomic and precision N-glycoproteomic profiling were conducted to assess the underlying macrophage activation. We identified a total of 587 glycoproteins, including 1239 glycopeptides, 526 monosaccharide components, and 8326 intact glycopeptides in glycoproteomics, as well as a total of 4496 proteins identified in proteomic analysis. These glycoproteins are widely involved in important biological processes, such as antigen presentation, cytokine production and glycosylation progression. Under the stimulation of the different pathogens, glycoproteins showed a dramatic change. We found that receptors in the Toll-like receptor pathway, such as Tlr2 and CD14, were increased under LPS and HSV stimulation. Glycosylation of those proteins was proven to influence their subcellular locations.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chia-Cheng Su ◽  
Shu-Chi Wang ◽  
I-Chen Chen ◽  
Fang-Yen Chiu ◽  
Po-Len Liu ◽  
...  

Zerumbone is a natural product isolated from the pinecone or shampoo ginger, Zingiber zerumbet (L.) Smith, which has a wide range of pharmacological activities, including anti-inflammatory effects. However, the effects of zerumbone on activation of the NLRP3 inflammasome in macrophages have not been examined. This study aimed to examine the effects of zerumbone on LPS-induced inflammatory responses and NLRP3 inflammasome activation using murine J774A.1 cells, murine peritoneal macrophages, and murine bone marrow-derived macrophages. Cells were treated with zerumbone following LPS or LPS/ATP treatment. Production of nitric oxide (NO) was measured by Griess reagent assay. The levels of IL-6, TNF-α, and IL-1β secretion were analyzed by ELISA. Western blotting analysis was performed to determine the expression of inducible NO synthase (iNOS), COX-2, MAPKs, and NLRP3 inflammasome-associated proteins. The activity of NF-κB was determined by a promoter reporter assay. The assembly of NLRP3 was examined by immunofluorescence staining and observed by confocal laser microscopy. Our experimental results indicated that zerumbone inhibited the production of NO, PGE2 and IL-6, suppressed the expression of iNOS and COX-2, repressed the phosphorylation of ERK, and decreased the activity of NF-κB in LPS-activated J774A.1 cells. In addition, zerumbone suppressed the production of IL-1β and inhibited the activity of NLRP3 inflammasome in LPS/ATP- and LPS/nigericin-activated J774A.1 cells. On the other hand, we also found that zerumbone repressed the production of NO and proinflammatory cytokines in LPS-activated murine peritoneal macrophages and bone marrow-derived macrophages. In conclusion, our experimental results demonstrate that zerumbone effectively attenuates the LPS-induced inflammatory response in macrophages both in vitro and ex vivo by suppressing the activation of the ERK-MAPK and NF-κB signaling pathways as well as blocking the activation of the NLRP3 inflammasome. These results imply that zerumbone may be beneficial for treating sepsis and inflammasome-related diseases.


2021 ◽  
Vol 94 ◽  
pp. 107457
Author(s):  
R. Diez-Orejas ◽  
L. Casarrubios ◽  
M.J. Feito ◽  
J.M. Rojo ◽  
M. Vallet-Regí ◽  
...  

2021 ◽  
Vol 13 (2) ◽  
pp. 217-221
Author(s):  
Ernesto Torres-Lopez ◽  
Nora Elizondo ◽  
Luz H. Verastegui ◽  
Jose J. Quijano ◽  
Rosa María Estrada-Martinez ◽  
...  

Au and Ag nanoparticles (NP) were synthesized using a green method that allows control of both particle size and surface chemistry. The gold and silver nanoparticles were coated with a fluorescent goat anti-body IgG that chemically incorporated the nanoparticles and the internalization behavior was studied by phagocytosis in murine peritoneal macrophages. Despite that, in principle, the presence of a simple metal induces a greater degree of cell death following the particle uptake, our results suggest that a large part of the silver and gold nanoparticles enter cells by means other than endocytosis and phagocytosis, as truly intelligent nanoparticles. This represents a potential for immunotherapy and studies to modulate the innate immune response as truly smart nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document