An approximate method for scattering in elastodynamics— the Born approximation II: SH-waves in infinite and half-space

Author(s):  
L.L. Chu ◽  
A. Askar ◽  
A.S. Cakmak
Geophysics ◽  
2013 ◽  
Vol 78 (4) ◽  
pp. E201-E212 ◽  
Author(s):  
Jochen Kamm ◽  
Michael Becken ◽  
Laust B. Pedersen

We present an efficient approximate inversion scheme for near-surface loop-loop EM induction data (slingram) that can be applied to obtain 2D or 3D models on a normal desktop computer. Our approach is derived from a volume integral equation formulation with an arbitrarily conductive homogeneous half-space as a background model. The measurements are not required to fulfill the low induction number condition (low frequency and conductivity). The high efficiency of the method is achieved by invoking the Born approximation around a half-space background. The Born approximation renders the forward operator linear. The choice of a homogeneous half-space yields closed form expressions for the required electromagnetic normal fields. It also yields a translationally invariant forward operator, i.e., a highly redundant Jacobian. In connection with the application of a matrix-free conjugate gradient method, this allows for very low memory requirements during the inversion, even in three dimensions. As a consequence of the Born approximation, strong conductive deviations from the background model are underestimated. Highly resistive anomalies are in principle overestimated, but at the same time difficult to resolve with induction methods. In the case of extreme contrasts, our forward model may fail in simultaneously explaining all the data collected. We applied the method to EM34 data from a profile that has been extensively studied with other electromagnetic methods and compare the results. Then, we invert three conductivity maps from the same area in a 3D inversion.


Author(s):  
Liguo Jin ◽  
Liting Du ◽  
Haiyan Wang

This paper presents a closed-form analytical solution for the dynamic response of two independent SDOF oscillators standing on one flexible foundation embedded in an elastic half-space and excited by plane SH waves. The solution is obtained by the wave function expansion method and is verified by comparison with the results of the special cases of a rigid foundation and the published research result of a flexible foundation. The model is utilized to investigate how the foundation stiffness influences the system response. The results show that there will be a significant interaction between the two independent structures on one flexible foundation and the intensity of the interaction is mainly dependent on foundation stiffness and structural stiffness. For a system with more flexible foundation, strong interaction will exist between the two structures; larger structural stiffness will also lead to a strong interaction between the two structures. When the structural mass and the structural stiffness are all larger, the flexible foundation cannot be treated as a rigid foundation even if the foundation stiffness is many times larger than that of soil. This model may be useful to get insight into the effects of foundation flexibility on the interaction of two independent structures standing on one flexible foundation.


2020 ◽  
Vol 43 (11) ◽  
pp. 6888-6902
Author(s):  
Guanxixi Jiang ◽  
Zailin Yang ◽  
Cheng Sun ◽  
Baitao Sun ◽  
Yong Yang

2008 ◽  
Vol 123 (5) ◽  
pp. 3843-3843
Author(s):  
Stanislav V. Golkin ◽  
Olivier Poncelet ◽  
Alexander Shuvalov

Sign in / Sign up

Export Citation Format

Share Document