A prefabricated bentonite clay liner

1991 ◽  
Vol 10 (5-6) ◽  
pp. 569-573
Author(s):  
Martin J. Simpson
Keyword(s):  
2019 ◽  
Vol 24 (94/4) ◽  
pp. 27-32
Author(s):  
T.S. Skoblo ◽  
I.N. Rybalko ◽  
A.V. Tihonov ◽  
T.V. Maltsev

The possibility of using a non-magnetic fraction of a detonation charge with a diamond fraction from the disposal of ammunition to modify the restoration coatings of a natural product – clay and secondary raw materials — was studied. Four different coating variants were investigated. For this, a T-620 electrode was used with its additional modification by coating with bentonite clay, as well as with a non-magnetic fraction of the detonation charge and applying it in the form of a slip coating on the cutting surface of the cultivator. It is shown that the use of such additives allows to increase the resistance of the working tool of agricultural machines, reduces its tendency to damage due to the minimum penetration of the thin-walled product of the hoe blade and a decrease in the cross section of the transition layer and the level of stress. Each modifier makes changes to increase the microhardness to varying degrees. An increase in microhardness is observed on the surface of the coating and its gradual decrease to the transition layer. The surface coating with the additional introduction of bentonite clay in a liquid bath has the highest microhardness. Its microhardness varies from HV-50-1009.7 to HV-50-615.2. Similarly, the effect of the modifying additive of the detonation charge, the microhardness varies from HV-50-969.6 to HV-50-633.26. When clay or a mixture is introduced into the restoration coating, the wear resistance increases by 1.3 - 2 times with respect to the deposited surfacing only by the electrode and by 2 - 3 times to the initial material of the cultivator. It was found that the lowest coefficient is characteristic for dry friction, as well as for hydroabrasive, for samples with additional modification with clay or a detonation charge


1996 ◽  
Vol 33 (8) ◽  
pp. 71-77
Author(s):  
I. M.-C. Lo ◽  
H. M. Liljestrand ◽  
J. Khim ◽  
Y. Shimizu

Simple land disposal systems for hazardous and mixed wastes contain heavy metal cationic species through precipitation and ion exchange mechanisms but typically fail by releasing soluble organic and inorganic anionic species. To enhance the removal of anions from leachate, clays are modified with coatings of iron or aluminium cations to bridge between the anionic surface and the anionic pollutants. A competitive surface ligand exchange model indicates that surface coatings of 10 meq cation/gm montmorillonite under typical leachate conditions increase the inorganic anion sorption capacity by at least a factor of 6 and increase the intrinsic surface exchange constants by more than a factor of 100. Similarly, metal hydroxide coatings on montmorillonite increase the organic anion sorption capacity by a factor of 9 and increase the intrinsic surface exchange constants by a factor of 20. For historical concentrations of non-metal anions in US hazardous and mixed waste leachate, sorption onto natural clay liner materials is dominated by arsenate sorption. With cation coatings, anion exchange provides an effective removal for arsenate, selenate, phenols, cresols, and phthalates. Engineering applications are presented for the use of modified clays as in situ barriers to leachate transport of anionic pollutants as well as for above ground treatment of recovered leachate.


Data in Brief ◽  
2021 ◽  
Vol 35 ◽  
pp. 106799
Author(s):  
Khouloud Jlassi ◽  
Kamel Eid ◽  
Mostafa H. Sliem ◽  
Aboubakr M. Abdullah ◽  
Mohamed M. Chehimi

Sign in / Sign up

Export Citation Format

Share Document