malachite green dye
Recently Published Documents


TOTAL DOCUMENTS

340
(FIVE YEARS 157)

H-INDEX

37
(FIVE YEARS 12)

2021 ◽  
Vol 9 (2) ◽  
pp. 25-29
Author(s):  
Salihu Yahuza ◽  
Ibrahim Alhaji Sabo

In this paper, various growth models such as Von Bertalanffy, Huang, Baranyi-Roberts, Modified Gompertz, Buchnam-3-phase, Modified-Richards and Modified-Logistics, were presented in fitting and evaluating the growth of Bacillus cereus wwcp1 on Malachite green dye. The Von Bertalanffy model was found to be the best model with the lowest RMSE and highest R2 values. The Accuracy and Bias factor values were near unity (1.0). The von Bertalanffy parameters such as A (lower asymptote bacterial growth), μ (bacterial growth rate) and k (curve fitting parameter) were found to be 2.757 (95% confidence interval from 2.131 to 3.382 ), 0.287 (95% confidence interval from 0.244 to 0.329) and 4.323 (95% confidence interval from 4.285 to 4.361) respectively.


Author(s):  
Ibrahem M. A. Hasan ◽  
Ahmed R. Tawfik ◽  
Fawzy H. Assaf

Abstract Zinc oxide nanoparticles (ZnO NPs) were biosynthesized. According to GC/MS analysis, chalcone; the main phytochemical; is probably complexed with Zn ions that are then oxidized to ZnO NPs by atmospheric O2 during heating. The ZnO NPs were characterized by TG, FTIR, XRD, FESEM, TEM, eEDAX, and BET surface area analysis. Sphere-like ZnO NPs were formed with 11 nm mean crystallite size, 5.2 m2 g−1 surface area, and 0.02 cm3 g−1 total pore volume. The synthesized ZnO showed excellent photocatalytic degradation (96.5±0.24% in 1 hour at 25 °C) of malachite green (MG) in aqueous solutions under UV light at optimum conditions; pH 10, MG initial concentration of 20 mg L−1, and ZnO dose of 1.5 g L−1. Also, ZnO showed very good reusability (92.9± 0.2% after 5 runs). The experimental data obeyed pseudo-first-order kinetics (R2=0.92). The photocatalysis process is dependent on the following species in the order: OH. > electron/positive hole pairs > O2.−. Moreover, photodegradation efficiency decreased in the presence of CO32−, HCO3−, and Cl−, but increased in the presence of NO3−, and SO42− ions. Thus, the green synthesized ZnO NPs can be applied as an efficient photocatalyst for the removal of MG from aqueous media.


2021 ◽  
Vol 8 (4) ◽  
pp. 295-302
Author(s):  
Soheila Amiri-Hosseini ◽  
Yalda Hashempour

Background: Malachite green (MG) is widely used as a fungicide, Bactericide parasiticide in the aquaculture industry, as a food additive, medical disinfectant, and also, as a dye for materials such as silk, leather, paper, etc. In this study, the photocatalytic removal of MG from aqueous solutions using TiO2-containing nanocomposites was reviewed. Methods: In this study, four databases (PubMed, Web of Science, ScienceDirect, and Scopus) were systematically searched to collect studies on the decomposition of MG using nanocomposites containing TiO2 under UV light radiation. Results: In total, 10 related and eligible studies were selected. Based on the results, TiO2 was doped with iron, Sn, Ag, Si, and Ni. The highest percentage of photocatalytic decomposition for MG was observed in Sn > Ni > Ag > Fe > Si. The removal efficiency of MG in the studied papers was between 75%-100%. Conclusion: Recombinant nanocomposites had a higher dye removal percentage than uncombined ones because they play an important role in the photocatalytic process of dye, by producing free radicals.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
John O Ojediran ◽  
Adewumi Oluwasogo Dada ◽  
Stephen O Aniyi ◽  
Robinson O. David ◽  
Adejoke D Adewumi

AbstractCationic Malachite green has been identified as a candidate for the endocrine disruptive compound found in the environment. In this study, the mechanism and isotherm modeling of effective adsorption of cationic malachite green dye onto acid-functionalized maize cob (AFMC) was investigated by batch technique. The operational parameters such as initial concentration (100–600 mg/L); contact time (10–120 min) and pH (3–10) influenced the removal efficiency and quantity adsorbed. A maximum of 99.3% removal efficiency was obtained at optimum conditions. AFMC physicochemical properties (surface area 1329 m2/g and particle size 300 μm < Ф < 250 μm) enhanced its efficiency. Based on R2 > 0.97 and consistently low values of adsorption statistical error functions (ASEF), equilibrium data were best fitted to Freundlich isotherm. Kinetic data were best described by a pseudo-second-order model with consistent R2 > 0.98 and validated by ASEF. The mechanism of the process was better described by intraparticle diffusion. Evidence of the adsorption process was confirmed by the change in morphology via Scanning Electron Microscopy (SEM) and surface chemistry by Fourier Transform infrared (FTIR). The performance of AFMC enlisted it as a sustainable and promising low-cost adsorbent from agro-residue for treatment of endocrine disruptive dye polluted water.


2021 ◽  
Vol 8 (11) ◽  
pp. 115404
Author(s):  
Gebhard Sabathi ◽  
Andreas Reyer ◽  
Nicola Cefarin ◽  
Thomas Sepperer ◽  
Jonas Eckardt ◽  
...  

Abstract Simple substrates for surface enhanced Raman spectroscopy (SERS), producible in a cost-efficient way, are of growing interest both for scientific and for environmental applications. In this study, we demonstrate the use of three types of bio-based tannin-furanic rigid foams as precursor materials for SERS substrates. Coated with a silver layer, these substrates allowed the detection of several well-known analytes in the mM regime by Raman spectroscopy. Specific optimization of the standard tannin-furanic foam morphology by tuning the chemical synthesis led to a smaller and more homogeneously distributed pore structure, supplying more active hot spot areas. Thus, we obtained a significant increase and a lower relative standard deviation (RSD) of the SERS signal recorded over the mapped SERS substrate area, for several analytes, in particular for Malachite Green dye. This work represents a feasibility study opening several potential applications of this biopolymers in fields such as the detection of water pollutants, virtually combining filtration and SERS capabilities driven by a controlled porosity.


2021 ◽  
Vol 22 (21) ◽  
pp. 11755
Author(s):  
Guotao Mao ◽  
Kai Wang ◽  
Fangyuan Wang ◽  
Hao Li ◽  
Hongsen Zhang ◽  
...  

Laccases can catalyze the remediation of hazardous synthetic dyes in an eco-friendly manner, and thermostable laccases are advantageous to treat high-temperature dyeing wastewater. A novel laccase from Geothermobacter hydrogeniphilus (Ghlac)was cloned and expressed in Escherichia coli. Ghlac containing 263 residues was characterized as a functional laccase of the DUF152 family. By structural and biochemical analyses, the conserved residues H78, C119, and H136 were identified to bind with one copper atom to fulfill the laccase activity. In order to make it more suitable for industrial use, Ghlac variant Mut2 with enhanced thermostability was designed. The half-lives of Mut2 at 50 °C and 60 °C were 80.6 h and 9.8 h, respectively. Mut2 was stable at pH values ranging from 4.0 to 8.0 and showed a high tolerance for organic solvents such as ethanol, acetone, and dimethyl sulfoxide. In addition, Mut2 decolorized approximately 100% of 100 mg/L of malachite green dye in 3 h at 70 °C. Furthermore, Mut2 eliminated the toxicity of malachite green to bacteria and Zea mays. In summary, the thermostable laccase Ghlac Mut2 could effectively decolorize and detoxify malachite green at high temperatures, showing great potential to remediate the dyeing wastewater.


Sign in / Sign up

Export Citation Format

Share Document