magnetic fraction
Recently Published Documents


TOTAL DOCUMENTS

93
(FIVE YEARS 34)

H-INDEX

11
(FIVE YEARS 1)

2022 ◽  
Vol 14 (2) ◽  
pp. 919
Author(s):  
Hyeryeong Jeong ◽  
Kongtae Ra

Pollution characteristics and ecological risks for metals in non-magnetic and magnetic road dust from steel industrial areas were investigated by applying a magnetic separation method. Metal (except for Al, Li, Ti, As, and Sb) concentrations in the magnetic road dust were 1.2 (Sn) to 7.8 (Fe) times higher than those in the non-magnetic road dust. For the magnetic road dust, the geo-accumulation index revealed a strongly to extremely polluted status for Cr, Zn, Cd, and Sb, a strongly polluted status for Mn, Cu, and Pb, and a moderately to strongly polluted status for Fe, Ni, Mo, and Hg. This result indicates that the dominant metal pollution sources of road dust in industrial areas were the traffic activities of heavy-duty vehicles. The mean content of magnetic particles accounted for 44.7% of the total road dust. The metal loadings in the magnetic road dust were 86% (Fe), 77% (Cr), 67% (Mn), 86% (Ni), 76% (Cu), 72% (Zn), 64% (Mo), and 62% (Cd), respectively. Removal of the magnetic fraction from road dust using magnetic separation techniques not only reduces metal contamination but can also improve effective road cleaning strategies or reduce waste generation.



Author(s):  
Erick Max Mourão Monteiro de Aguiar ◽  
Amilton Barbosa Botelho Junior ◽  
Heitor Augusto Duarte ◽  
Denise Crocce Romano Espinosa ◽  
Jorge Alberto Soares Tenório ◽  
...  


Minerals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 19
Author(s):  
Ivan Silin ◽  
Devrim Gürsel ◽  
Christian Büchter ◽  
Lars Weitkämper ◽  
Hermann Wotruba

Eudialyte ores from Norra Kärr (Sweden) and Kringlerne (Greenland) are considered a potential source of rare-earth elements (REE) for the development of a sustainable REE industry outside China. Magnetic separation is successfully applicated to recover eudialyte as a magnetic fraction. In the case of the Norra Kärr deposit, up to 20% of the REE and up to 40% of the Zr are lost during mineral processing in the non-magnetic fraction. Zr and REE are associated with non-magnetic minerals such as catapleiite, low- or non-magnetic eudialyte species, and both their intergrowths. Besides zirconosilicates such as catapleiite and eudialyte, the non-magnetic fraction has valuable and already-liberated minerals such as alkali feldspars and nepheline, which should not be considered as tailings. In this investigation, a possible way to recover REE bearing zirconosilicates from the non-magnetic fraction using flotation is presented. First, a low-grade eudialyte concentrate (1.8% Zr, 0.94% REE) from ground ore was obtained using magnetic separation. The non-magnetic fraction was then treated using froth flotation, and a Zr-REE bearing product (9% Zr, 1.5% REE) was obtained as froth product. For this purpose, phosphoric acid esters were used as selective collectors for zirconosilicates at a pH between 3.5 and 4.5. The reagent regime could be proposed not only to recover Zr- and REE-bearing minerals, but also simultaneously to remove Fe, Ti, and other colored impurities from the nepheline-feldspar product and to minimize the tailings volume.



Author(s):  
Светлана Александровна Бибанаева ◽  
Владимир Михайлович Скачков

Работа посвящена изучению влияния моно- и сложносоставных металлических добавок на процесс переработки бокситов гидрощелочным способом. Изучен химический качественный и количественный состав, морфология красных шламов (КШ) полученных в условиях автоклавного высокотемпературного выщелачивания. Проведены рентгенофазовые исследования, направленные на определение состава и структуры соединений в красном шламе. Показана перспективность метода автоклавного выщелачивания трудновскрываемых бокситов с одновременным извлечением глинозема и конверсии гематита в магнетит газообразным водородом. Установлено, что способ позволяет переработку бокситов с высокой степенью извлечения глинозема и позволяет получать красные шламы с различным содержанием магнитной фракции и низким содержанием натрия. Полученный магнетизированный красный шлам пригоден для переработки с помощью магнитной сепарации и делает перспективным сырьем для черной металлургии. Определена зависимость степени конверсии гематита в магнетит от вида восстанавливающего агента. По результатам исследований был получен патент на изобретение. The work is devoted to the study of the influence of mono - and composite metal additives on the process of processing bauxite by the hydro-alkaline method. The chemical qualitative and quantitative composition, morphology of red mud (RM) obtained under conditions of autoclave high-temperature leaching were studied. X-ray phase studies aimed at determining the composition and structure of compounds in red mud were carried out. The prospects of the method of autoclave leaching of hard-to-open bauxites with simultaneous extraction of alumina and conversion of hematite to magnetite by hydrogen gas are shown. It was found that the method allows the processing of bauxite with a high degree of alumina extraction and allows to obtain red mud with different magnetic fraction content and low sodium content. The resulting magnetized red mud is suitable for processing by magnetic separation and makes it a promising raw material for the ferrous metallurgy. The dependence of the degree of conversion of hematite to magnetite on the type of reducing agent is determined. According to the results of the research, a patent for the invention was obtained.



Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1411
Author(s):  
Filip Kovár ◽  
Lucie Bartoňová

Separation of coal ash into magnetic and non-magnetic fractions facilitates their utilization when processed separately. Due to desulphurization additives added to coal during the fluidised-bed combustion, non-magnetic fractions often contain elevated CaO levels (while magnetic concentrates are typically rich in Fe2O3). Both CaO and Fe2O3 are known for their ability to bind As during the combustion, whose distribution is a crucial parameter in terms of proper utilization of these fractions. Therefore, the study deals with the As partitioning within magnetic and non-magnetic fractions of fluidized-bed coal combustion ashes. Two different (successive) procedures of dry magnetic separation were used to separate each ash into strongly magnetic, less magnetic, and a non-magnetic fraction. Due to their optimal utilization, the concentrations of As and other target elements in these fractions were evaluated and compared. Magnetic concentrates from the first separation step (in vibrofluidized state) contained 60–70% Fe2O3, magnetic concentrates separated manually out of the residues after the first separation contained 26–41% Fe2O3, and the non-magnetic residues contained 2.4–3.5% Fe2O3. Arsenic levels were the highest in the non-magnetic residues and gradually decreased with the increasing Fe2O3 content in the magnetic fractions. The dominant As association in the studied samples was to CaO (r = +0.909) and with SO3 (r = +0.906) whereas its joint occurrence with Fe2O3 was improbable (r = −0.834).



2021 ◽  
Vol 5 (1) ◽  
pp. 45
Author(s):  
Stergi Kapelari ◽  
Platon N. Gamaletsos ◽  
Tom Van Der Donck ◽  
Yiannis Pontikes ◽  
Bart Blanpain

To tackle the challenge of bauxite residue (BR), generated during the alumina production, as well as to recover some of its metal content, three combinatory H2-based processes were utilized. Firstly, Greek BR was mixed with NaOH to produce water soluble Na-aluminates and was roasted under pure H2 gas in order to reduce the Fe+3 content. Then the first process combined water leaching and magnetic separation, the second water leaching and melting and the last included wet magnetic separation. The water media resulted in the dissolution of Na-aluminate phases and the production of Al, Na-ion rich leachates. From these, pregnant leaching solutions recovery of Al was 78%, 84% and for the third case it reached 91%. Concerning Na recovery, it could reach 94%. Both melting process and magnetic separation aimed for Fe recovery from the material. The former case however still needs to be optimized, here its concept is introduced. The magnetic fraction, after the dry magnetic separation, varied in Fe content from 31.57 wt.% to 38.50 wt.%, while after the wet magnetic separation it reached 31.85 wt.%.



2021 ◽  
pp. 1-15
Author(s):  
Churat Weeraphan ◽  
Pongsakorn Thawornpan ◽  
Supinya Thanapongpichat ◽  
Kanitta Srinoun ◽  
Aung Win Tun ◽  
...  


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marcin Szuszkiewicz ◽  
Hana Grison ◽  
Eduard Petrovský ◽  
Maria Magdalena Szuszkiewicz ◽  
Beata Gołuchowska ◽  
...  

AbstractPedogenic magnetic fraction in soils is attributed to fine-grained particles, i.e. superparamagnetic grains. In the case of a strongly magnetic geogenic fraction, pedogenic magnetic contribution is hard to detect. To the best of our knowledge, detailed research into the masking of pedogenic superparamagnetic grains and quantification of this effect has not yet been carried out. The principal aim of our research is to quantify the influence of coarse-grained ferrimagnetic fraction on the detection of the superparamagnetic grains. In order to describe the masking phenomenon, volume and frequency-dependent magnetic susceptibility were determined on a set of laboratory prepared samples composed of natural substances: a diamagnetic quartz matrix, detrital coarse-grained ferrimagnetic crystals from alkaline and ultra-alkaline igneous rocks, and superparamagnetic soil concretions formed in the Haplic Cambisol. Mineralogy, concentration, type and grain size of the tested material were described by parameters of environmental magnetism. The magnetic parameters distinguish both geogenic multidomain and pedogenic superparamagnetic grains. The magnetic signal of the superparamagnetic grains is gradually masked by the increasing proportion of multidomain grains of magnetite/maghemite. The experiment clearly describes the masking effect and brings new insight to studies dealing with strongly magnetic soils of natural and/or highly contaminated origin as a tool for estimation of superparamagnetic pedogenic contribution.



Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1032
Author(s):  
Daniel Fernández-González ◽  
Janusz Prazuch ◽  
Íñigo Ruiz-Bustinza ◽  
Carmen González-Gasca ◽  
Cristian Gómez-Rodríguez ◽  
...  

On the one hand, copper slag is nowadays a waste in copper pyrometallurgy despite the significant quantities of iron (>40 wt. %) and copper (1 to 2 wt. %). On the other hand, solar energy, when properly concentrated, offers great potential in high-temperature processes. Therefore, concentrated solar power (CSP) could be used in the treatment of copper slag to transform fayalite into magnetite and copper sulfides and oxides into copper nodules. This is the objective of this paper. The results show that fayalite was partially decomposed into magnetite and silica. Moreover, copper nodules (65–85 wt. % Cu) were identified in the treated samples, while the initial slag, analyzed by X-ray diffraction, X-ray fluorescence, and SEM-EDX, did not show the presence of metallic copper. Finally, the treated copper slag was crushed and grinded down to 40 μm, and two fractions were obtained by magnetic separation. The magnetic fraction (85%) was mainly comprised of magnetite, while the non-magnetic fraction (15%) had 5–10 wt. % Cu. Considering the experimental results, 7.5–18 kg Cu/t slag might be recovered from the slag. A preliminary economic analysis, considering the current copper price, indicates that only the recovery of copper could represent a significant economic benefit (>30 €/t slag). Therefore, CSP might be a potential candidate for the treatment of copper slag to recover copper and iron.



2021 ◽  
Vol 100 (2) ◽  
pp. 6-18
Author(s):  
T. Skoblo ◽  
◽  
I. Rybalko ◽  
O. Nanka ◽  
O. Saychuk ◽  
...  

In recent years, research and developments related to the creation of new areas using nanotechnology take a special place in scientific achievements. They are developed and widely used in Physics, Chemistry, Biology, Electronics, Medicine, Food Production and to a much lesser extent in Engineering. This is due to the fact that there are different requirements to parts and products used in mechanical engineering, they have a complex shape, are made of different materials, production methods, heat treatment. While operating, their working layer undergoes degradation with a significant change in structure and their hardening using nanocoatings may turn out to be ineffective in both technical and economic aspects. In this case, only a specific approach, which is determined by comprehensive research with identification of the main factors of parts damageability in specific production and operation conditions, can be expedient. In addition, in some cases for hardening, repair and restoration of parts it is expedient to use surfacing methods with the introduction of modifying agents in a liquid bath during crystallization. These modifying agents are nano-and dispersed diamonds, which make it possible to adjust temperature parameters of crystallization, grain size, and stress level. This approach allows using high-alloyed, high-carbon electrodes even for thin-walled steel and cast iron products. In this case, the diamond inclusions additive plays the role of micro-refrigerators, which significantly change the crystallization temperature range. It is important to determine the optimal dose of the introduction of such a modifier and ensure uniform distribution the components in the coating. The presented work is devoted to the new technology development of hardening of cultivator blades metal with nano-and dispersed diamond additives, which are the part of the detonation charge from the disposal of ammunition. Nowadays, in agriculture, a large number of tillage implements are used for tillage, the working bodies of which are sweep blades. They are operated under conditions of abrasive particles impact, and this is accompanied by their intense wear with a corresponding change in the geometric dimensions of the main working surfaces. The worn sweep blades significantly reduce efficiency and quality of the carried-out work. The analysis of the effective choice of surfacing materials for hardening and improving their performance has been carried out and the nature of wear has been evaluated in order to identify areas of maximum damage and to determine the optimal method. It is known that T-590 and T-620 electrodes are used for the restoration surfacing of tillage implements. It was found the hardfacing of thin-walled parts is accompanied by a smaller heat sink and, in some cases, they are flooded with defect formation. To reduce it, a non-magnetic fraction of detonation charge from ammunition disposalin the form of an electrode modification was introduced, which ensured the uniform distribution the components in the coating. The method of the X-ray electron-probe analysis has been used to evaluate features of structure formation and component distribution along the perimeter of the coating. It was found out that this method of hardening reduces heat input and increases the microhardness and wear resistance of the surfaced coating, reduces the transition zone and thermal impact. The recommended method of metal hardening of new cultivator blades is to apply stripes on the point tip and wings of blades. On the basis of the nature of wear, the expediency of applying stripes on the point tip of the cultivator blade from the front side, and on wings from the rear side, is justified. The optimal geometrical dimensions of hardening stripes and their location on the blade are presented, which allows minimizing the local stresses and increasing wear resistance.



Sign in / Sign up

Export Citation Format

Share Document