Nondestructive evaluation of damage accumulation processes in composite laminates

1986 ◽  
Vol 25 (2) ◽  
pp. 103-118 ◽  
Author(s):  
Wayne W. Stinchcomb
2012 ◽  
Vol 24 (8) ◽  
pp. 991-1006 ◽  
Author(s):  
Oliver J Myers ◽  
George Currie ◽  
Jonathan Rudd ◽  
Dustin Spayde ◽  
Nydeia Wright Bolden

Defects in composite laminates are difficult to detect because of the conductive and paramagnetic properties of composite materials. Timely detection of defects in composite laminates can improve reliability. This research illustrates the preliminary analysis and detection of delaminations in carbon fiber laminate beams using a single layer of magnetostrictive particles and noncontacting concentric magnetic excitation and sensing coils. The baseline analytical models also begin to address the intrusive nature of the magnetostrictive particles as well as relate the applied excitation field with the stress and magnetic flux densities induced in the magnetostrictive layer. Numerical methods are used to begin to characterize the presence of magnetostrictive particles in the laminate and the behavior of the magnetostrictive particles in relationship to the magnetic field used during sensing. Unidirectional laminates with embedded delaminations are used for simulations and experimentations. A novel, yet simplified fabrication method is discussed to ensure consistent scanning and sensing capabilities. The nondestructive evaluation scanning experiments were conducted with various shapes and sizes of damages introduced into carbon fiber–reinforced polymeric composite structures. The results demonstrate high potential for magnetostrictive particles as a low-cost, noncontacting, and reliable sensor for nondestructive evaluation of composite materials.


Sign in / Sign up

Export Citation Format

Share Document