Thermo-mechanical fatigue behavior of an angle-ply SCS-6/Ti-15-3 metal matrix composite

1994 ◽  
Vol 52 (1) ◽  
pp. 47-59 ◽  
Author(s):  
J.T Roush ◽  
S Mall ◽  
W.H Vaught
1997 ◽  
Vol 119 (4) ◽  
pp. 422-428
Author(s):  
B. P. Sanders ◽  
S. Mall ◽  
L. B. Dennis

A study was conducted to investigate the fatigue behavior of a cross-ply metal matrix composite subjected to fully-reversed, strain-controlled fatigue cycling at elevated temperature. The stress-strain response, maximum and minimum stresses, and modulus during cycling were analyzed to characterize the macro-mechanical behavior. Additionally, microscopy and fractography were conducted to identify damage mechanisms. Damage always initiated in the 90 deg plies, but the governing factor in the fatigue life was damage in the 0 deg plies. The dominant failure mode was fracturing of fibers in the 0 deg plies when the maximum strain was greater than 0.55 percent, but the dominant failure mode was matrix cracking when the maximum strain was less than 0.55 percent. Combining the fatigue life data with the macro-mechanical and microscopic observations, a fatigue life diagram was developed and partitioned into three regions. These regions showed relationships between the maximum applied strain and the dominant damage mechanisms. Also, on a strain range basis, the fatigue lives of the specimens tested under the strain-controlled mode in this study were compared with its counterpart under the load-controlled mode of the previous study. It was found that the fatigue lives for these two conditions were the same within the experimental scatter.


1995 ◽  
Vol 117 (1) ◽  
pp. 109-117 ◽  
Author(s):  
K. A. Hart ◽  
S. Mall

The response of a quasi-isotropic laminate of metal matrix composite, SCS-6/Ti-15-3 in a thermomechanical fatigue (TMF) environment was investigated. To achieve this, three sets of fatigue tests were conducted: 1) in-phase TMF (IP-TMF), 2) out-of-phase TMF (OP-TMF), and 3) isothermal fatigue (IF). The fatigue response was dependent on the test condition and the maximum stress level during cycling. The IF, IP-TMF, and OP-TMF conditions yielded shortest fatigue life at higher, intermediate and lower stress levels, respectively. Examination of the failure mode through the variation of strain or modulus during cycling, and post-mortem microscopic evaluation revealed that it was dependent on the fatigue condition and applied stress level. Higher stresses, mostly with IP-TMF and IF conditions, produced a primarily fiber dominated failure. Lower stresses, mostly with the OP-TMF condition, produced a matrix dominated failure. Also, an empirical model based on the observed damage mechanisms was developed to represent the fatigue lives for the three conditions examined here.


Materials ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 953
Author(s):  
Ashley Dyer ◽  
Jonathan Jones ◽  
Richard Cutts ◽  
Mark Whittaker

The thermo-mechanical fatigue (TMF) behaviour of a Ti-6Al-4V matrix composite reinforced with SCS-6 silicon carbide fibres (140 μm longitudinal fibres, laid up hexagonally) has been investigated. In-phase and out-of-phase TMF cycles were utilized, cycling between 80–300 °C, with varying maximum stress. The microstructure and fracture surfaces were studied using electron backscatter diffraction (EBSD), energy-dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), profilometry, and optical microscopy. The results have shown the damaging effect of out-of-phase cycling with crack initiation occurring earlier than in in-phase tests and crack propagation rates being accelerated in out-of-phase cycles. Fatigue crack initiation has been shown to be sensitive to crystallographic texture in the cladding material and thermo-mechanical fatigue test results can be considered according to a previously proposed conceptual framework for the interpretation of metal matrix composite fatigue.


Sign in / Sign up

Export Citation Format

Share Document