applied stress
Recently Published Documents


TOTAL DOCUMENTS

842
(FIVE YEARS 97)

H-INDEX

45
(FIVE YEARS 4)

2022 ◽  
Vol 204 ◽  
pp. 111139
Author(s):  
Dulat Akzhigitov ◽  
Tamerlan Srymbetov ◽  
Boris Golman ◽  
Christos Spitas ◽  
Zhandos N. Utegulov

Author(s):  
Amanzhol Kubeyev ◽  
Nathaniel Forbes Inskip ◽  
Tomos Phillips ◽  
Yihuai Zhang ◽  
Christine Maier ◽  
...  

AbstractFlow in fractures is sensitive to their geometrical surface characteristics. The surface can undergo deformation if there is a change in stress. Natural fractures have complex geometries and rough surfaces which complicates the modelling of deformation and fluid flow. In this paper, we present a computational model that takes a digital image of a rough fracture surface and provides a stress–permeability relationship. The model is based on a first-principle contact mechanics approach at the continuum scale. Using this first principle approach, we investigate numerically the effect of fracture surface roughness and shifting of surfaces on the permeability evolution under applied stress and compare the results with laboratory experiments. A mudrock core fracture surface was digitalized using an optical microscope, and 2D cross sections through fracture surface profiles were taken for the modelling. Mechanical deformation is simulated with the contact mechanics based Virtual Element Method solver that we developed within the MATLAB Reservoir Simulation Toolbox platform. The permeability perpendicular to the fracture cross section is determined by solving the Stokes equation using the Finite Volume Method. A source of uncertainty in reproducing laboratory results is that the exact anchoring of the two opposite surfaces is difficult to determine while the stress–permeability relationship is sensitive to the exact positioning. We, therefore, investigate the sensitivity to a mismatch in two scenarios: First, we assess the stress–permeability of a fracture created using two opposing matched surfaces from the rock sample, consequently applying relative shear. Second, we assess the stress–permeability of fractures created by randomly selecting opposing surfaces from that sample. We find that a larger shift leads to a smaller drop in permeability due to applied stress, which is in line with a previous laboratory study. We also find that permeability tends to be higher in fractures with higher roughness within the investigated stress range. Finally, we provide empirical stress–permeability relationships for various relative shears and roughnesses for use in hydro-mechanical studies of fractured geological formations.


Author(s):  
Swaminathan Ganesan ◽  
Sampath Vedamanickam

In this study, the influence of upper cycle temperature (maximum temperature in a cycle) and the magnitude of applied stress on the functional properties of an SMA during partial thermomechanical cycling has been studied. A near-equiatomic NiTi SMA was chosen and tested under different upper cycle temperatures (between martensite finish (Mf) and austenite finish (Af) temperatures) and stress level (below and above the yield strength of the martensite). The upper cycle temperature was varied by controlling the magnitude of the current supply. The results show that a raise in the upper cycle temperature causes the permanent strain to increase and also lowers the stability. However, decreasing the stress imposed to a value lower than the yield strength of the martensite improves cyclic stability. The upper cycle temperature was found to influence the crack nucleation, whereas the applied stress level the crack propagation during partial thermomechanical cycling of SMAs. Therefore, decreasing the upper cycle temperature as well as the magnitude of stress applied to lower than the yield stress of martensite have been found to be suitable strategies for increasing the lifespan of SMA-based actuators during partial thermomechanical cycling.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Gianfranco Ulian ◽  
Giovanni Valdrè

AbstractCalcite (CaCO3, trigonal crystal system, space group $$R\overline{3}c$$ R 3 ¯ c ) is a ubiquitous carbonate phase commonly found on the Earth’s crust that finds many useful applications in both scientific (mineralogy, petrology, geology) and technological fields (optics, sensors, materials technology) because of its peculiar anisotropic physical properties. Among them, photoelasticity, i.e., the variation of the optical properties of the mineral (including birefringence) with the applied stress, could find usefulness in determining the stress state of a rock sample containing calcite by employing simple optical measurements. However, the photoelastic tensor is not easily available from experiments, and affected by high uncertainties. Here we present a theoretical Density Functional Theory approach to obtain both elastic and photoelastic properties of calcite, considering realistic experimental conditions (298 K, 1 atm). The results were compared with those available in literature, further extending the knowledge of the photoelasticity of calcite, and clarifying an experimental discrepancy in the sign of the p41 photoelastic tensor component measured in past investigations. The methods here described and applied to a well-known crystalline material can be used to obtain the photoelastic properties of other minerals and/or materials at desired pressure and temperature conditions.


Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 76
Author(s):  
Yanting Gu ◽  
Jilei Zhang

Tensile fatigue performances of selected natural rattan strips (NRSs) and synthetic rattan strips (SRSs) were evaluated by subjecting them to zero-to-maximum constant amplitude cyclic tensile loading. Experimental results indicated that a fatigue life of 25,000 cycles began at the stress level of 50% of rattan material ultimate tensile strength (UTS) value for NRSs evaluated. Rattan core strips’ fatigue life of 100,000 cycles started at the stress level of 30% of its UTS value. Rattan bast strips could start a fatigue life of 100,000 cycles at a stress level below 30% of material UTS value. SRSs didn’t reach the fatigue life of 25,000 cycles until the applied stress level reduced to 40% of material UTS value and reached the fatigue life of 100,000 cycles at the stress level of 40% of material UTS value. It was found that NRSs’ S-N curves (applied nominal stress versus log number of cycles to failure) could be approximated by S=σou(1−H×log10⋅Nf). The constant H values in the equation were 0.10 and 0.08 for bast and core materials, respectively.


2022 ◽  
Vol 54 (2) ◽  
Author(s):  
Wei-ting Zhang ◽  
Wen-cheng Ye ◽  
Xing Chen ◽  
Zhen-hua Ye

Nanoscale ◽  
2022 ◽  
Author(s):  
D. Faurie ◽  
N. Challab ◽  
M. Haboussi ◽  
F. Zighem

A strain field (εxx) in Ti/Co/Al nanowires on the PEN substrate subjected to uniaxial stress. The applied stress perpendicular to the nanowire length leads to very low strain in nanowires (about 30 times lower than the macroscopic strain).


2022 ◽  
Vol 71 (2) ◽  
pp. 026103-026103
Author(s):  
Jiang Yan-Bo ◽  
◽  
Liu Wen-Bo ◽  
Sun Zhi-Peng ◽  
La Yong-Xiao ◽  
...  

Author(s):  
Р.Р. Зиннатуллин ◽  
А.И. Искандаров ◽  
Л.А. Ковалева

The dynamics of the interfacial tension coefficient at the interface between water and model solutions of asphaltenes of different concentrations in toluene has been studied. It has been shown that, over time, the interfacial tension decreases due to the adsorption of asphaltene molecules at the interface. With an increase in the concentration of asphaltenes in the solution, the decrease in interfacial tension occurs more intensively. The results of a study of the elongation of a water drop in a solution under the influence of an electric field are presented. It is shown that after the formation of an adsorption film, a higher stress must be applied to stretch the droplet, and the relative elongation depends nonlinearly on the applied stress. The studies were carried out using the suspended drop method.


Sign in / Sign up

Export Citation Format

Share Document