Effects of EtOH on mitochondrial aspartate aminotransferase expression and cellular leakage, and fatty acid uptake in HepG2 cells Depts. of Medicine and Pathology, Mt. Sinai School of Medicine, New York, NY 10029

Hepatology ◽  
1995 ◽  
Vol 22 (4) ◽  
pp. A241
Molecules ◽  
2017 ◽  
Vol 22 (1) ◽  
pp. 90 ◽  
Author(s):  
Giang Ho ◽  
Eili Kase ◽  
Helle Wangensteen ◽  
Hilde Barsett

2021 ◽  
Author(s):  
Olfa Khalifa ◽  
Neyla S. AL-AKl ◽  
Khaoula Errafii ◽  
Abdelilah Arredouani

Abstract Non-alcoholic fatty liver disease (NAFLD) is the leading chronic liver disease worldwide. Agonists of the glucagon-like peptide-1 receptor (GLP-1R), currently approved to treat type 2 diabetes, hold promise to improve steatosis and even steatohepatitis. However, due to their pleiotropic effects, the mechanisms underlying their protective effect on NAFLD remain elusive. We aimed to investigate these mechanisms using an in vitro model of steatosis treated with the GLP-1R agonist Exendin-4 (Ex-4). We established steatotic HepG2 cells by incubating HepG2 cells with 400 µM oleic acid (OA) overnight. Further treatment with 200nM Ex-4 for 3 hours significantly reduced the OA-induced lipid accumulation (p < 0.05). Concomitantly, Ex-4 substantially reduced the expression levels of Fatty Acid-Binding Protein 1 (FABP1) and its primary activator, Forkhead box protein A1 (FOXA1). Interestingly, the silencing of β-catenin with siRNA abolished the effect of Ex-4 on these genes, suggesting dependency on the Wnt/β-catenin pathway. Furthermore, after β-catenin silencing, OA treatment significantly increased the expression of nuclear transcription factors SREBP-1 and TCF4, whereas Ex-4 significantly decreased this upregulation. Our findings suggest that direct activation of GLP-1R by Ex-4 reduces OA-induced steatosis in HepG2 cells by reducing fatty acid uptake via FABP1 downregulation.


Sign in / Sign up

Export Citation Format

Share Document