Modeling of volatile organic contaminants in trickling filter systems

1995 ◽  
Vol 31 (1) ◽  
1995 ◽  
Vol 31 (1) ◽  
pp. 95-104 ◽  
Author(s):  
Henryk Melcer ◽  
Wayne J. Parker ◽  
Bruce E. Rittmann

Despite the widespread use of trickling filters, there has been minimal investigation of the fate of volatile organic contaminants (VOCs) in such systems. A model describing the fate of VOCs in trickling filters is described. The removal of VOCs was investigated in a pilot-scale trickling filter receiving a feed of sewage dosed with a constant concentration of selected VOCs. Increasing hydraulic loading tended to increase the proportion of influent VOCs found in the effluent. Imposing effluent recycle also increased the fraction of VOCs found in the effluent but also decreased the fraction stripped and increased the fraction that was biodegraded. The values of the biodegradation coefficient, Kb, were found to be reproducible and affected by a combination of high hydraulic loading rate and effluent recycle.


1987 ◽  
Vol 22 (1) ◽  
pp. 49-64 ◽  
Author(s):  
J.F. Devlin ◽  
W.A. Gorman

Abstract The Gloucester Landfill is located near Ottawa, Ontario, on a northeast trending ridge of Quaternary age. The ridge comprises outwash sediments which make up two aquifer systems. A confined system exists next to bedrock, and is overlain by a silty-clayey stratum (the confining layer) which is, in turn, overlain by an unconfined aquifer system. Two independent volatile organic plumes have previously been identified at the landfill: the southeast plume, which has penetrated the confined aquifer system, and the northeast plume which is migrating in the unconfined aquifer. The distribution of volatile organic contaminants at the northeast plume site appears to be a function of two factors: (1) heterogeneities in the aquifer sediments are causing the channeling of contaminants through a narrow path; (2) the low fraction of organic carbon in the unconfined aquifer sediments at the northeast site is resulting in little retardation of the contaminants there, relative to those at the southeast site. Acetate was the only volatile fatty acid detected in the leachate. It was measurable only in areas where the volatile organic contamination was significant. Although methane was detected in the contaminated sediments, suggesting that microbial activity was present, the high concentration of acetate (>1000 ppm) which was detected down-gradient from the source area indicates that any biodegradation which is occurring is proceeding at a very slow rate.


2010 ◽  
Vol 44 (3) ◽  
pp. 1023-1029 ◽  
Author(s):  
Helena I. F. Amaral ◽  
Michael Berg ◽  
Matthias S. Brennwald ◽  
Markus Hofer ◽  
Rolf Kipfer

1994 ◽  
Vol 77 (3) ◽  
pp. 647-654 ◽  
Author(s):  
Don W Thompson

Abstract Purge-and-trap gas chromatography/mass spectrometry is evaluated for the quantitation of part-per-billion levels of volatile organic contaminants in bulk vegetable oils. Results using 2 purge techniques (direct purging of the heated oil and purging after dispersing the oil on an aluminum oxide powder) and 2 quantitative methods (standard curve and deuterium-labeled internal standard addition) are reported. Twenty volatile compounds and 8 vegetable oils were investigated. Recovery data and estimated detection limits for each compound are reported for each purge technique. Generally acceptable recoveries (70-130% for more than 90% of the analyte spikes) and acceptable detection levels (approximately 4-10 ppb) were obtained for all compounds using either the external standard curve or the deuterium-isotope-labeled internal standard. The use of a dispersant (such as alumina) for sample purging resulted in poor recoveries of the highly volatile contaminants.


Sign in / Sign up

Export Citation Format

Share Document