The PPS 3 time-series sediment trap and the trap sample processing techniques used during the ECOMARGE experiment

1990 ◽  
Vol 10 (9-11) ◽  
pp. 943-958 ◽  
Author(s):  
Serge Heussner ◽  
Claude Ratti ◽  
Jacques Carbonne
Fractals ◽  
2006 ◽  
Vol 14 (01) ◽  
pp. 71-76 ◽  
Author(s):  
SANGRAK KIM

This paper describes fractal behaviors in a soccer game according to the player's position. It is quite important for us to characterize the fractal motion behaviors of the objects during the game. We obtained two-dimensional coordinates of the objects using standard video processing techniques from a computer soccer game. We calculated values of regularization dimensions of the time series to characterize their fractal behaviors. To see positional dependence, we averaged individual player's values over the same position in the same team. When a team is one-sidedly experiencing a severe attack, its defenders have higher fractal dimensions than those of the opponent's corresponding players. We propose a new measure of relative dominance in attack against the opponent team.


Radiocarbon ◽  
2010 ◽  
Vol 52 (2) ◽  
pp. 278-285 ◽  
Author(s):  
Bruce A Buchholz ◽  
Paula Zermeño ◽  
Hyun-Min Hwang ◽  
Thomas M Young ◽  
Thomas P Guilderson

Submicron-sized airborne particulate matter (PM) is not collected well on regular quartz or glass fiber filter papers. We used a micro-orifice uniform deposit impactor (MOUDI) to fractionate PM into 6 size fractions and deposit it on specially designed high-purity thin aluminum disks. The MOUDI separated PM into fractions 56–100, 100–180, 180–320, 320–560, 560–1000, and 1000–1800 nm. Since the MOUDI has a low flow rate (30 L/min), it takes several days to collect sufficient carbon on 47-mm foil disks. The small carbon mass (20–200 μg C) and large aluminum substrate (∼25 mg Al) present several challenges to production of graphite targets for accelerator mass spectrometry (AMS) analysis. The Al foil consumes large amounts of oxygen as it is heated and tends to melt into quartz combustion tubes, causing gas leaks. We describe sample processing techniques to reliably produce graphitic targets for 14C AMS analysis of PM deposited on Al impact foils.


Radiocarbon ◽  
1996 ◽  
Vol 38 (3) ◽  
pp. 583-595 ◽  
Author(s):  
Makio C. Honda

In order to verify sediment trap samples as indicators of upper ocean 14C concentrations, particulate inorganic radiocarbon (PICΔ14C) collected by time-series sediment traps in the Sea of Okhotsk and the Bering Sea was measured by accelerator mass spectrometry (AMS). All of the PICΔ14C measurements were < 0‰, in contrast to GEOSECS 14C data in the upper ocean from the northwestern North Pacific. This difference is attributed to the upwelling of deepwater that contains low Δ14C of dissolved inorganic carbon (DICΔ14C) and to the decrease over time of surface DICΔ14C owing to the decrease of atmospheric Δ14C values. In addition, PICΔ14C values showed significant seasonal variability: PICΔ14C collected in the fall was the greatest (-22‰ on average), whereas PICΔ14C collected in winter showed an average minimum of −48‰. It is likely that this difference was caused by changes in mixed layer thickness. Although some uncertainties remain, further study on PICΔ14C will enable us to estimate seasonal variability in DICΔ14C and air-sea CO2 exchange rate.


1983 ◽  
Vol 13 (3) ◽  
pp. 181-194 ◽  
Author(s):  
Cindy Lee ◽  
Stuart G. Wakeham ◽  
John W. Farrington

Toxins ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 480 ◽  
Author(s):  
Blaire Umhau ◽  
Claudia Benitez-Nelson ◽  
Clarissa Anderson ◽  
Kelly McCabe ◽  
Christopher Burrell

Water column bulk Pseudo-nitzschia abundance and the dissolved and particulate domoic acid (DA) concentrations were measured in the Santa Barbara Basin (SBB), California from 2009–2013 and compared to bulk Pseudo-nitzschia cell abundance and DA concentrations and fluxes in sediment traps moored at 147 m and 509 m. Pseudo-nitzschia abundance throughout the study period was spatially and temporally heterogeneous (<200 cells L−1 to 3.8 × 106 cells L−1, avg. 2 × 105 ± 5 × 105 cells L−1) and did not correspond with upwelling conditions or the total DA (tDA) concentration, which was also spatially and temporally diverse (<1.3 ng L−1 to 2.2 × 105 ng L−1, avg. 7.8 × 103 ± 2.2 × 104 ng L−1). We hypothesize that the toxicity is likely driven in part by specific Pseudo-nitzschia species as well as bloom stage. Dissolved (dDA) and particulate (pDA) DA were significantly and positively correlated (p < 0.01) and both comprised major components of the total DA pool (pDA = 57 ± 35%, and dDA = 42 ± 35%) with substantial water column concentrations (>1000 cells L−1 and tDA = 200 ng L−1) measured as deep as 150 m. Our results highlight that dDA should not be ignored when examining bloom toxicity. Although water column abundance and pDA concentrations were poorly correlated with sediment trap Pseudo-nitzschia abundance and fluxes, DA toxicity is likely associated with senescent blooms that rapidly sink to the seafloor, adding another potential source of DA to benthic organisms.


1996 ◽  
Vol 67 (12) ◽  
pp. 4360-4363 ◽  
Author(s):  
K. Kremling ◽  
U. Lentz ◽  
B. Zeitzschel ◽  
D. E. Schulz‐Bull ◽  
J. C. Duinker

Sign in / Sign up

Export Citation Format

Share Document