scholarly journals Inorganic Radiocarbon in Time-Series Sediment Trap Samples: Implication of Seasonal Variation of 14C in the Upper Ocean

Radiocarbon ◽  
1996 ◽  
Vol 38 (3) ◽  
pp. 583-595 ◽  
Author(s):  
Makio C. Honda

In order to verify sediment trap samples as indicators of upper ocean 14C concentrations, particulate inorganic radiocarbon (PICΔ14C) collected by time-series sediment traps in the Sea of Okhotsk and the Bering Sea was measured by accelerator mass spectrometry (AMS). All of the PICΔ14C measurements were < 0‰, in contrast to GEOSECS 14C data in the upper ocean from the northwestern North Pacific. This difference is attributed to the upwelling of deepwater that contains low Δ14C of dissolved inorganic carbon (DICΔ14C) and to the decrease over time of surface DICΔ14C owing to the decrease of atmospheric Δ14C values. In addition, PICΔ14C values showed significant seasonal variability: PICΔ14C collected in the fall was the greatest (-22‰ on average), whereas PICΔ14C collected in winter showed an average minimum of −48‰. It is likely that this difference was caused by changes in mixed layer thickness. Although some uncertainties remain, further study on PICΔ14C will enable us to estimate seasonal variability in DICΔ14C and air-sea CO2 exchange rate.

2010 ◽  
Vol 7 (1) ◽  
pp. 251-300 ◽  
Author(s):  
J. T. Mathis ◽  
J. N. Cross ◽  
N. R. Bates ◽  
S. B. Moran ◽  
M. W. Lomas ◽  
...  

Abstract. The southeastern shelf of the Bering Sea is one of the ocean's most productive ecosystems and sustains more than half of the total US fish landings annually. However, the character of the Bering Sea shelf ecosystem has undergone a dramatic shift over the last several decades, causing notable increases in the dominance of temperate features coupled to the decline of arctic species and decreases in the abundance of commercially important organisms. In order to assess the current state of primary production in the southeastern Bering Sea, we measured the spatio-temporal distribution and controls on dissolved inorganic carbon (DIC) concentrations in spring and summer of 2008 across six shelf domains defined by differing biogeochemical characteristics. DIC concentrations were tightly coupled to salinity in spring and ranged from ~1900 μmol kg−1 over the inner shelf to ~2400 μmol kg−1 in the deeper waters of the Bering Sea. In summer, DIC concentrations were lower due to dilution from sea ice melt and primary production. Concentrations were found to be as low ~1800 μmol kg−1 over the inner shelf. We found that DIC concentrations were drawn down 30–150 μmol kg−1 in the upper 30 m of the water column due to primary production between the spring and summer occupations. Using the seasonal drawdown of DIC, estimated rates of net community production (NCP) on the inner, middle, and outer shelf averaged 28±10 mmol C m−2 d−1. However, higher rates of NCP (40–47 mmol C m−2 d−1) were observed in the ''Green Belt'' where the greatest confluence of nutrient-rich basin water and iron-rich shelf water occurs. We estimated that in 2008, total productivity across the shelf was on the order of ~105 Tg C yr−1. Due to the paucity of consistent, comparable productivity data, it is impossible at this time to quantify whether the system is becoming more or less productive. However, as changing climate continues to modify the character of the Bering Sea, we have shown that NCP can be an important indicator of how the ecosystem is functioning.


2010 ◽  
Vol 7 (5) ◽  
pp. 1769-1787 ◽  
Author(s):  
J. T. Mathis ◽  
J. N. Cross ◽  
N. R. Bates ◽  
S. Bradley Moran ◽  
M. W. Lomas ◽  
...  

Abstract. In order to assess the current state of net community production (NCP) in the southeastern Bering Sea, we measured the spatio-temporal distribution and controls on dissolved inorganic carbon (DIC) concentrations in spring and summer of 2008 across six shelf domains defined by differing biogeochemical characteristics. DIC concentrations were tightly coupled to salinity in spring and ranged from ~1900 μmoles kg−1 over the inner shelf to ~2400 μmoles kg−1 in the deeper waters of the Bering Sea. In summer, DIC concentrations were lower due to dilution from sea ice melt, terrestrial inputs, and primary production. Concentrations were found to be as low ~1800 μmoles kg−1 over the inner shelf. We found that DIC concentrations were drawn down 30–150 μmoles kg−1 in the upper 30 m of the water column due to primary production and calcium carbonate formation between the spring and summer occupations. Using the seasonal drawdown of DIC, estimated rates of NCP on the inner, middle, and outer shelf averaged 28 ± 9 mmoles C m−2 d−1. However, higher rates of NCP (40–47 mmoles C m−2 d−1) were observed in the "Green Belt" where the greatest confluence of nutrient-rich basin water and iron-rich shelf water occurs. We estimated that in 2008, total NCP across the shelf was on the order of ~96 Tg C yr−1. Due to the paucity of consistent, comparable productivity data, it is impossible at this time to quantify whether the system is becoming more or less productive. However, as changing climate continues to modify the character of the Bering Sea, we have shown that NCP can be an important indicator of how the ecosystem is functioning.


1987 ◽  
Vol 9 ◽  
pp. 236-236
Author(s):  
D.J. Cavalieri ◽  
C.L. Parkinson

The seasonal sea-ice cover of the combined Bering and Okhotsk Seas at the time of maximum ice extent is almost 2 × 106 km2 and exceeds that of any other seasonal sea-ice zone in the Northern Hemisphere. Although both seas are relatively shallow bodies of water overlying continental shelf regions, there are important geographical differences. The Sea of Okhotsk is almost totally enclosed, being bounded to the north and west by Siberia and Sakhalin Island, and to the east by Kamchatka Peninsula. In contrast, the Bering Sea is the third-largest semi-enclosed sea in the world, with a surface area of 2.3 × 106 km2, and is bounded to the west by Kamchatka Peninsula, to the east by the Alaskan coast, and to the south by the Aleutian Islands arc.While the relationship between the regional oceanography and meteorology and the sea-ice covers of both the Bering Sea and Sea of Okhotsk have been studied individually, relatively little attention has been given to the occasional out-of-phase relationship between the fluctuations in the sea-ice extent of these two large seas. In this study, we present 3 day averaged sea-ice extent data obtained from the Nimbus-5 Electrically Scanning Microwave Radiometer (ESMR-5) for the four winters for which ESMR-5 data were available, 1973 through 1976, and document those periods for which there is an out-of-phase relationship in the fluctuations of the ice cover between the Bering Sea and the Sea of Okhotsk. Further, mean sea-level pressure data are also analyzed and compared with the time series of sea-ice extent data to provide a basis for determining possible associations between the episodes of out-of-phase fluctuations and atmospheric circulation patterns.Previous work by Campbell and others (1981) using sea-ice concentrations also derived from ESMR-5 data noted this out-of-phase relationship between the two ice packs in 1973 and 1976. The authors commented that the out-of-phase relationship is “... surprising as these are adjacent seas, and one would assume that they had similar meteorologic environments”. We argue here that the out-of-phase relationship is consistent with large-scale atmospheric circulation patterns, since the two seas span a range of longitude of about 60°, corresponding to a half wavelength of a zonal wave-number 3, and hence are quite susceptible to changes in the amplitude and phase of large-scale atmospheric waves.


Toxins ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 480 ◽  
Author(s):  
Blaire Umhau ◽  
Claudia Benitez-Nelson ◽  
Clarissa Anderson ◽  
Kelly McCabe ◽  
Christopher Burrell

Water column bulk Pseudo-nitzschia abundance and the dissolved and particulate domoic acid (DA) concentrations were measured in the Santa Barbara Basin (SBB), California from 2009–2013 and compared to bulk Pseudo-nitzschia cell abundance and DA concentrations and fluxes in sediment traps moored at 147 m and 509 m. Pseudo-nitzschia abundance throughout the study period was spatially and temporally heterogeneous (<200 cells L−1 to 3.8 × 106 cells L−1, avg. 2 × 105 ± 5 × 105 cells L−1) and did not correspond with upwelling conditions or the total DA (tDA) concentration, which was also spatially and temporally diverse (<1.3 ng L−1 to 2.2 × 105 ng L−1, avg. 7.8 × 103 ± 2.2 × 104 ng L−1). We hypothesize that the toxicity is likely driven in part by specific Pseudo-nitzschia species as well as bloom stage. Dissolved (dDA) and particulate (pDA) DA were significantly and positively correlated (p < 0.01) and both comprised major components of the total DA pool (pDA = 57 ± 35%, and dDA = 42 ± 35%) with substantial water column concentrations (>1000 cells L−1 and tDA = 200 ng L−1) measured as deep as 150 m. Our results highlight that dDA should not be ignored when examining bloom toxicity. Although water column abundance and pDA concentrations were poorly correlated with sediment trap Pseudo-nitzschia abundance and fluxes, DA toxicity is likely associated with senescent blooms that rapidly sink to the seafloor, adding another potential source of DA to benthic organisms.


1981 ◽  
Vol 59 (4) ◽  
pp. 667-678 ◽  
Author(s):  
Alex E. Peden ◽  
M. Eric Anderson

Lycodapus leptus n.sp., L. poecilus n.sp., and L. psarostomatus n.sp. are described from the eastern Bering Sea. A new key to all known species of Lycodapus is presented. In addition, L. fierasfer Gilbert, L. parviceps Gilbert, and L. derjugini Andriashev are recognized from the Bering Sea and L. microdon Schmidt is recognized from the Sea of Okhotsk. The northern range limit of Lycodapus dermatinus Gilbert is established from a sea mount off southeastern Alaska. A specimen of Lycodapus that cannot be identified to species represents the most southern record for the genus in Asiatic waters.


Chemosphere ◽  
2016 ◽  
Vol 157 ◽  
pp. 174-180 ◽  
Author(s):  
Olga N. Lukyanova ◽  
Vasiliy Yu. Tsygankov ◽  
Margarita D. Boyarova ◽  
Nadezhda K. Khristoforova

Sign in / Sign up

Export Citation Format

Share Document