CNDO-calculation of second order vibronic coupling in the 1B2u-1A1g transition of benzene

1981 ◽  
Vol 62 (1-2) ◽  
pp. 187-193 ◽  
Author(s):  
Gad Fischer ◽  
J.R. Reimers ◽  
I.G. Ross
2019 ◽  
Vol 21 (42) ◽  
pp. 23466-23472 ◽  
Author(s):  
Pernille D. Pedersen ◽  
Maria Harris Rasmussen ◽  
Kurt V. Mikkelsen ◽  
Matthew S. Johnson

The environmentally relevant n → π* transition in the nitrate anion is doubly forbidden by symmetry. A simple scheme for including second order vibronic coupling is presented.


1992 ◽  
Vol 166 (1-2) ◽  
pp. 19-34 ◽  
Author(s):  
Mark J. Riley ◽  
Hans U. Güdel ◽  
Andrew H. Norton

1990 ◽  
Vol 148 (2-3) ◽  
pp. 229-240 ◽  
Author(s):  
Mark J. Riley ◽  
Elmars R. Krausz

Author(s):  
W. L. Bell

Disappearance voltages for second order reflections can be determined experimentally in a variety of ways. The more subjective methods, such as Kikuchi line disappearance and bend contour imaging, involve comparing a series of diffraction patterns or micrographs taken at intervals throughout the disappearance range and selecting that voltage which gives the strongest disappearance effect. The estimated accuracies of these methods are both to within 10 kV, or about 2-4%, of the true disappearance voltage, which is quite sufficient for using these voltages in further calculations. However, it is the necessity of determining this information by comparisons of exposed plates rather than while operating the microscope that detracts from the immediate usefulness of these methods if there is reason to perform experiments at an unknown disappearance voltage.The convergent beam technique for determining the disappearance voltage has been found to be a highly objective method when it is applicable, i.e. when reasonable crystal perfection exists and an area of uniform thickness can be found. The criterion for determining this voltage is that the central maximum disappear from the rocking curve for the second order spot.


Sign in / Sign up

Export Citation Format

Share Document