New Monte Carlo simulations of many-particle stochastic dynamics: Growth of correlations and local self-ordering during annihilation of like particles

1991 ◽  
Vol 155 (3) ◽  
pp. 357-368 ◽  
Author(s):  
Ross Brown ◽  
Nikolai A. Efremov
2004 ◽  
Vol 18 (17) ◽  
pp. 873-880 ◽  
Author(s):  
KELLY C. DE CARVALHO ◽  
TÂNIA TOMÉ

We consider two probabilistic cellular automata to analyze the stochastic dynamics of a biological two-species system. We focus our attention on the characterization of the dynamic patterns exhibited by both models. Performing Monte Carlo simulations, we observe a time oscillating behavior that occurs at a local level.


1993 ◽  
Vol 60 (1) ◽  
pp. 141-148 ◽  
Author(s):  
Mario Di Paola ◽  
Giovanni Falsone

In this paper, nonlinear systems subjected to external and parametric non-normal delta-correlated stochastic excitations are treated. A new interpretation of the stochastic differential calculus allows first a full explanation of the presence of the Wong-Zakai or Stratonovich correction terms in the Itoˆ’s differential rule. Then this rule is extended to take into account the non-normality of the input. The validity of this formulation is confirmed by experimental results obtained by Monte Carlo simulations.


Author(s):  
Matthew T. Johnson ◽  
Ian M. Anderson ◽  
Jim Bentley ◽  
C. Barry Carter

Energy-dispersive X-ray spectrometry (EDS) performed at low (≤ 5 kV) accelerating voltages in the SEM has the potential for providing quantitative microanalytical information with a spatial resolution of ∼100 nm. In the present work, EDS analyses were performed on magnesium ferrite spinel [(MgxFe1−x)Fe2O4] dendrites embedded in a MgO matrix, as shown in Fig. 1. spatial resolution of X-ray microanalysis at conventional accelerating voltages is insufficient for the quantitative analysis of these dendrites, which have widths of the order of a few hundred nanometers, without deconvolution of contributions from the MgO matrix. However, Monte Carlo simulations indicate that the interaction volume for MgFe2O4 is ∼150 nm at 3 kV accelerating voltage and therefore sufficient to analyze the dendrites without matrix contributions.Single-crystal {001}-oriented MgO was reacted with hematite (Fe2O3) powder for 6 h at 1450°C in air and furnace cooled. The specimen was then cleaved to expose a clean cross-section suitable for microanalysis.


1979 ◽  
Vol 40 (C7) ◽  
pp. C7-63-C7-64
Author(s):  
A. J. Davies ◽  
J. Dutton ◽  
C. J. Evans ◽  
A. Goodings ◽  
P.K. Stewart

Sign in / Sign up

Export Citation Format

Share Document