A first order relaxation model for the prediction of the local interfacial area density in two-phase flows

1996 ◽  
Vol 22 (6) ◽  
pp. 1073-1104 ◽  
Author(s):  
M. Milliest ◽  
D.A. Drew ◽  
R.T. Lahey
2003 ◽  
Vol 125 (1) ◽  
pp. 84-96 ◽  
Author(s):  
Ranganathan Kumar ◽  
Thomas A. Trabold

The local distributions of void fraction, interfacial frequency, and velocity have been measured in annular flow of R-134a through a wall-heated, high aspect ratio duct. High aspect ratio ducts provide superior optical access to tubes or irregular geometries. This work expands upon earlier experiments conducted with adiabatic flows in the same test section. Use of thin, transparent heater films on quartz windows provided sufficient electrical power capacity to produce the full range of two-phase conditions of interest. With wall vapor generation, the system pressure was varied from 0.9 to 2.4 MPa, thus allowing the investigation of flows with liquid-to-vapor density ratios covering the range of about 7 to 27, far less than studied in air-water and similar systems. There is evidence that for a given cross-sectional average void fraction, the local phase distributions can be different depending on whether the vapor phase is generated at the wall, or upstream of the test section inlet. In wall-heated flows, local void fraction profiles measured across both the wide and narrow test section dimensions illustrate the profound effect that pressure has on the local flow structure; notably, increasing pressure appears to thin the wall-bounded liquid films and redistribute liquid toward the edges of the test section. This general trend is also manifested in the distributions of mean droplet diameter and interfacial area density, which are inferred from local measurements of void fraction, droplet frequency and velocity. At high pressure, the interfacial area density is increased due to the significant enhancement in droplet concentration.


Entropy ◽  
2019 ◽  
Vol 21 (11) ◽  
pp. 1039
Author(s):  
Maren Hantke ◽  
Ferdinand Thein

Liquid–vapor flows exhibiting phase transition, including phase creation in single-phase flows, are of high interest in mathematics, as well as in the engineering sciences. In two preceding articles the authors showed on the one hand the capability of the isothermal Euler equations to describe such phenomena (Hantke and Thein, arXiv, 2017, arXiv:1703.09431). On the other hand they proved the nonexistence of certain phase creation phenomena in flows governed by the full system of Euler equations, see Hantke and Thein, Quart. Appl. Math. 2015, 73, 575–591. In this note, the authors close the gap for two-phase flows by showing that the two-phase flows considered are not possible when the flow is governed by the full Euler equations, together with the regular Rankine-Hugoniot conditions. The arguments rely on the fact that for (regular) fluids, the differences of the entropy and the enthalpy between the liquid and the vapor phase of a single substance have a strict sign below the critical point.


Sign in / Sign up

Export Citation Format

Share Document