A comparison of the effects of bromocriptine and somatostatin on growth hormone gene expression in the rat anterior pituitary gland in vitro

1987 ◽  
Vol 52 (3) ◽  
pp. 257-261 ◽  
Author(s):  
D.F. Wood ◽  
K. Docherty ◽  
D.B. Ramsden ◽  
M.C. Sheppard
1992 ◽  
Vol 12 (6) ◽  
pp. 2624-2632
Author(s):  
D Murphy ◽  
K Pardy ◽  
V Seah ◽  
D Carter

In thyroid hormone-depleted rats, the rate of transcription of the growth hormone (GH) gene in the anterior pituitary gland is lower than the rate in euthyroid controls, and there is a corresponding reduction in the abundance of the GH mRNA. Concomitantly, the poly(A) tail of the GH mRNA increases in length. Examination of nuclear RNA from anterior pituitary glands of control and thyroid hormone-depleted rats revealed no difference in the length of pre-mRNAs containing the first and last introns of the GH gene. However, mature nuclear GH RNA is differentially polyadenylated in euthyroid and hypothyroid animals. We suggest that the extent of polyadenylation of the GH transcript is regulated in the cell nucleus concomitant with or subsequent to the splicing of the pre-mRNA. Experiments with anterior pituitary gland explant cultures demonstrated that the GH mRNA from thyroid hormone-depleted rats is more stable than its euthyroid counterpart and that the poly(A) tail may contribute to the differential stability of free GH ribonucleoproteins.


1992 ◽  
Vol 12 (6) ◽  
pp. 2624-2632 ◽  
Author(s):  
D Murphy ◽  
K Pardy ◽  
V Seah ◽  
D Carter

In thyroid hormone-depleted rats, the rate of transcription of the growth hormone (GH) gene in the anterior pituitary gland is lower than the rate in euthyroid controls, and there is a corresponding reduction in the abundance of the GH mRNA. Concomitantly, the poly(A) tail of the GH mRNA increases in length. Examination of nuclear RNA from anterior pituitary glands of control and thyroid hormone-depleted rats revealed no difference in the length of pre-mRNAs containing the first and last introns of the GH gene. However, mature nuclear GH RNA is differentially polyadenylated in euthyroid and hypothyroid animals. We suggest that the extent of polyadenylation of the GH transcript is regulated in the cell nucleus concomitant with or subsequent to the splicing of the pre-mRNA. Experiments with anterior pituitary gland explant cultures demonstrated that the GH mRNA from thyroid hormone-depleted rats is more stable than its euthyroid counterpart and that the poly(A) tail may contribute to the differential stability of free GH ribonucleoproteins.


1984 ◽  
Vol 100 (2) ◽  
pp. 219-226 ◽  
Author(s):  
S. A. Nicholson ◽  
T. E. Adrian ◽  
B. Gillham ◽  
M. T. Jones ◽  
S. R. Bloom

ABSTRACT The effect of six hypothalamic peptides on the basal release of ACTH and that induced by arginine vasopressin (AVP) or by ovine corticotrophin releasing factor (oCRF) from fragments of the rat anterior pituitary gland incubated in vitro was investigated. Dose–response curves to AVP and to oCRF were obtained, and the response to a low dose of oCRF was potentiated by a low dose of AVP. Basal release of ACTH was not affected by any of the peptides in concentrations in the range 10−12 to 10−6 mol/l, and only substance P (SP) and somatostatin (SRIF) inhibited significantly the response to oCRF in a dose-related manner. The responses to a range of doses of oCRF or AVP were reduced by 10−8 and 10 − 6 mol SP or SRIF/1, and to a greater extent by the higher dose. Except in the case of 10−6 mol SRIF/1 on the response to AVP, the response was not further diminished by preincubation of the tissue with the peptide before the stimulating agent was added. The inhibition of the responses to AVP or oCRF by 10−9 mol SP/1 was not potentiated by its combination with either 5 × 10−10 or 10−8 mol SRIF/1; the inhibitory effects were merely additive. The results suggest that although SRIF and SP are able to modulate the release of ACTH from the anterior pituitary gland, they do so only at a high concentration. In the case of SRIF these concentrations are several orders of magnitude higher than those reported to be present in the hypophysial portal blood and therefore a physiological role for this peptide in the control of ACTH secretion is unlikely. J. Endocr. (1984) 100, 219–226


Sign in / Sign up

Export Citation Format

Share Document