Electrophysiological connections of neurons in ventral pallidal regions of the olfactory tubercle with the main olfactory bulb and piriform cortex

1988 ◽  
Vol 93 (2-3) ◽  
pp. 214-219 ◽  
Author(s):  
Elena Barragán ◽  
Horacio Ferreyra-Moyano
2007 ◽  
Vol 98 (5) ◽  
pp. 2716-2728 ◽  
Author(s):  
Elizabeth Chiang ◽  
Ben W. Strowbridge

Olfactory information is processed by a diverse group of interconnected forebrain regions. Most efforts to define the cellular mechanisms involved in processing olfactory information have been focused on understanding the function of the olfactory bulb, the primary second-order olfactory region, and its principal target, the piriform cortex. However, the olfactory bulb also projects to other targets, including the rarely studied olfactory tubercle, a ventral brain region recently implicated in regulating cocaine-related reward behavior. We used whole cell patch-clamp recordings from rat tubercle slices to define the intrinsic properties of neurons in the dense and multiform cell layers. We find three common firing modes of tubercle neurons: regular-spiking, intermittent-discharging, and bursting. Regular-spiking neurons are typically spiny-dense-cell-layer cells with pyramidal-shaped, dendritic arborizations. Intermittently discharging and bursting neurons comprise the majority of the deeper multiform layer and share a common morphology: multipolar, sparsely spiny cells. Rather than generating all-or-none stereotyped discharges, as observed in many brain areas, bursting cells in the tubercle generate depolarizing plateau potentials that trigger graded but time-limited discharges. We find two distinct subclasses of bursting cells that respond similarly to step stimuli but differ in the role transmembrane Ca currents play in their intrinsic behavior. Calcium currents amplify depolarizing inputs and enhance excitability in regenerative bursting cells, whereas the primary action of Ca in nonregenerative bursting tubercle neurons appears to be to decrease excitability by triggering Ca-activated K currents. Nonregenerative bursting cells exhibit a prolonged refractory period after even short discharges suggesting that they may function to detect transient events.


1998 ◽  
Vol 79 (3) ◽  
pp. 1425-1440 ◽  
Author(s):  
Donald A. Wilson

Wilson, Donald A. Habituation of odor responses in the rat anterior piriform cortex. J. Neurophysiol. 79: 1425–1440, 1998. Simultaneous recordings of main olfactory bulb (MOB) and anterior piriform cortex (aPCX) neuron responses to repeated and prolonged odor pulses were examined in freely breathing, urethan-anesthetized rats. Comparisons of odor responses were made between multi-unit recordings of MOB activity and single-unit extracellular and intracellular recordings of Layer II/III aPCX neurons. Odor stimuli consisted of either 2-s pulses repeated at 30-s intervals or a single, prolonged 50-s stimulus. Respiration rate was monitored throughout. MOB and aPCX neuron responses to odor were quantified both through firing frequency and through the temporal patterning of firing over the respiratory cycle. The results demonstrate that aPCX neurons habituate significantly more (faster) than MOB neurons with both repeated and prolonged stimulation paradigms. This enhanced habituation is expressed as both a decrease in aPCX firing despite maintained odor-evoked MOB input and as a decrease in aPCX respiratory cycle entrainment despite maintained MOB cyclic input. Intracellular aPCX recordings suggest that several mechanisms may be involved in this experience-induced change in aPCX function, including 1) decreased excitatory driveof aPCX neurons, 2) decreased excitability of aPCX neurons,and/or 3) enhancement in odor-evoked inhibition of aPCX neurons. These studies provide the initial basis for understanding the mechanisms of nonassociative plasticity in olfactory cortex.


2018 ◽  
Vol 2 ◽  
pp. 239821281881749 ◽  
Author(s):  
Peter A Brennan

The identification, in the late 20th century, of unexpectedly large families of G-protein-coupled chemosensory receptors revolutionised our understanding of the olfactory system. The discovery that non-selective olfactory sensory neurons express a single olfactory receptor type and project to a specific glomerulus in the main olfactory bulb provided fundamental insight into the spatial pattern of odour representation in the main olfactory bulb. Studies using head-fixed awake mice and optogenetics have revealed the importance of the timing of glomerular input in relation to the sniff cycle and the role of piriform cortex in odour object recognition. What in the 1970s had appeared to be a relatively simple dichotomy between odour detection by the main olfactory system and pheromone detection by the vomeronasal system has been found to consist of multiple subsystems. These mediate innate responses to odours and pheromones and to substances as diverse as O2, volatile urinary constituents, peptides and proteins.


2006 ◽  
Vol 402 (1-2) ◽  
pp. 121-125 ◽  
Author(s):  
Igor Kratskin ◽  
Natalia Kenigfest ◽  
Jean Paul Rio ◽  
Chakib Djediat ◽  
Jacques Repérant

1982 ◽  
Vol 8 (6) ◽  
pp. 711-719 ◽  
Author(s):  
Rosalinda Guevara-Aguilar ◽  
Luis Pastor Solano-Flores ◽  
Olga Alejandra Donatti-Albarran ◽  
Hector Ulises Aguilar-Baturoni

Sign in / Sign up

Export Citation Format

Share Document