piriform cortex
Recently Published Documents


TOTAL DOCUMENTS

711
(FIVE YEARS 132)

H-INDEX

65
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Magor L Lőrincz ◽  
Ildikó Piszár

Originating from the brainstem raphe nuclei, serotonin is an important neuromodulator involved in a variety of physiological and pathological functions. Specific optogenetic stimulation of serotonergic neurons results in the divisive suppression of spontaneous, but not sensory evoked activity in the majority of neurons in the primary olfactory cortex and an increase in firing in a minority of neurons. To reveal the mechanisms involved in this dual serotonergic control of cortical activity we used a combination of in vitro electrophysiological recordings from identified neurons in the primary olfactory cortex, optogenetics and pharmacology and found that serotonin suppressed the activity of principal neurons, but excited local interneurons. The results have important implications in sensory information processing and other functions of the olfactory cortex and related brain areas.


PLoS Biology ◽  
2022 ◽  
Vol 20 (1) ◽  
pp. e3001509
Author(s):  
Qiaohan Yang ◽  
Guangyu Zhou ◽  
Torben Noto ◽  
Jessica W. Templer ◽  
Stephan U. Schuele ◽  
...  

Studies of neuronal oscillations have contributed substantial insight into the mechanisms of visual, auditory, and somatosensory perception. However, progress in such research in the human olfactory system has lagged behind. As a result, the electrophysiological properties of the human olfactory system are poorly understood, and, in particular, whether stimulus-driven high-frequency oscillations play a role in odor processing is unknown. Here, we used direct intracranial recordings from human piriform cortex during an odor identification task to show that 3 key oscillatory rhythms are an integral part of the human olfactory cortical response to smell: Odor induces theta, beta, and gamma rhythms in human piriform cortex. We further show that these rhythms have distinct relationships with perceptual behavior. Odor-elicited gamma oscillations occur only during trials in which the odor is accurately perceived, and features of gamma oscillations predict odor identification accuracy, suggesting that they are critical for odor identity perception in humans. We also found that the amplitude of high-frequency oscillations is organized by the phase of low-frequency signals shortly following sniff onset, only when odor is present. Our findings reinforce previous work on theta oscillations, suggest that gamma oscillations in human piriform cortex are important for perception of odor identity, and constitute a robust identification of the characteristic electrophysiological response to smell in the human brain. Future work will determine whether the distinct oscillations we identified reflect distinct perceptual features of odor stimuli.


2021 ◽  
Vol 11 (1) ◽  
pp. 191
Author(s):  
Dorothy W. Gietzen

Our health requires continual protein synthesis for maintaining and repairing tissues. For protein synthesis to function, all the essential (indispensable) amino acids (IAAs) must be available in the diet, along with those AAs that the cells can synthesize (the dispensable amino acids). Here we review studies that have shown the location of the detector for IAA deficiency in the brain, specifically for recognition of IAA deficient diets (IAAD diets) in the anterior piriform cortex (APC), with subsequent responses in downstream brain areas. The APC is highly excitable, which makes is uniquely suited to serve as an alarm for reductions in IAAs. With a balanced diet, these neurons are kept from over-excitation by GABAergic inhibitory neurons. Because several transporters and receptors on the GABAergic neurons have rapid turnover times, they rely on intact protein synthesis to function. When an IAA is missing, its unique tRNA cannot be charged. This activates the enzyme General Control Nonderepressible 2 (GCN2) that is important in the initiation phase of protein synthesis. Without the inhibitory control supplied by GABAergic neurons, excitation in the circuitry is free to signal an urgent alarm. Studies in rodents have shown rapid recognition of IAA deficiency by quick rejection of the IAAD diet.


Nature ◽  
2021 ◽  
Author(s):  
Cindy Poo ◽  
Gautam Agarwal ◽  
Niccolò Bonacchi ◽  
Zachary F. Mainen
Keyword(s):  

2021 ◽  
Vol 22 (24) ◽  
pp. 13551
Author(s):  
Vishaal Rajani ◽  
Aida Maziar ◽  
Kwun Nok Mimi Man ◽  
Johannes W. Hell ◽  
Qi Yuan

In the hippocampus, the contributions of N-methyl-D-aspartate receptors (NMDARs) and L-type calcium channels (LTCCs) to neuronal transmission and synaptic plasticity change with aging, underlying calcium dysregulation and cognitive dysfunction. However, the relative contributions of NMDARs and LTCCs in other learning encoding structures during aging are not known. The piriform cortex (PC) plays a significant role in odor associative memories, and like the hippocampus, exhibits forms of long-term synaptic plasticity. Here, we investigated the expression and contribution of NMDARs and LTCCs in long-term depression (LTD) of the PC associational fiber pathway in three cohorts of Sprague Dawley rats: neonatal (1–2 weeks), young adult (2–3 months) and aged (20–25 months). Using a combination of slice electrophysiology, Western blotting, fluorescent immunohistochemistry and confocal imaging, we observed a shift from an NMDAR to LTCC mediation of LTD in aged rats, despite no difference in the amount of LTD expression. These changes in plasticity are related to age-dependent differential receptor expression in the PC. LTCC Cav1.2 expression relative to postsynaptic density protein 95 is increased in the associational pathway of the aged PC layer Ib. Enhanced LTCC contribution in synaptic depression in the PC may contribute to altered olfactory function and learning with aging.


Author(s):  
Sónia Ferreira ◽  
Isabel Catarina Duarte ◽  
André Paula ◽  
Andreia C. Pereira ◽  
João Carlos Ribeiro ◽  
...  

AbstractUsher syndrome (USH) is a condition characterized by ciliary dysfunction leading to retinal degeneration and hearing/vestibular loss. Putative olfactory deficits in humans have been documented at the psychophysical level and remain to be proven at the neurophysiological level. Thus, we aimed to study USH olfactory impairment using functional magnetic resonance imaging. We analyzed differences in whole-brain responses between 27 USH patients and 26 healthy participants during an olfactory detection task with a bimodal odorant (n-butanol). The main research question was whether between-group differences could be identified using a conservative whole-brain approach and in a ROI-based approach in key olfactory brain regions. Results indicated higher olfactory thresholds in USH patients, thereby confirming the hypothesis of reduced olfactory acuity. Importantly, we found decreased BOLD activity for USH patients in response to odorant stimulation in the right piriform cortex, while right orbitofrontal cortex showed increased activity. We also found decreased activity in other higher-level regions in a whole brain approach. We suggest that the hyper activation in the orbitofrontal cortex possibly occurs as a compensatory mechanism after the under-recruitment of the piriform cortex. This study suggests that olfactory deficits in USH can be objectively assessed using functional neuroimaging which reveals differential patterns of activity both in low- and high-level regions of the olfactory network.


Author(s):  
Dorothy Winter Gietzen

Our health requires continual protein synthesis for maintaining and repairing tissues. For protein synthesis to function, all the essential (indispensable) amino acids (IAA) that must be available in the diet, along with those AAs that the cells can synthesize, the dispensable amino acids. Here we review studies that have shown the location of the detector for IAA deficiency in the brain, specifically for recognition of IAA deficient diets (IAAD diets) in the anterior piriform cortex (APC), with subsequent responses in downstream brain areas. The APC is highly excitable, uniquely suited to serve as an alarm for reductions in IAAs. With a balanced diet, these neurons are kept from over-excitation by GABAergic inhibitory neurons. Because several transporters and receptors on the GABAergic neurons have rapid turnover times, they rely on intact protein synthesis to function. When an IAA is missing, its unique tRNA cannot be charged. This activates the enzyme General Control Nonderepressible 2 (GCN2) that is important in the initiation phase of protein synthesis. Without the inhibitory control supplied by GABAergic neurons, excitation in the circuitry is free to signal an urgent alarm. Studies in rodents have shown rapid recognition of IAA deficiency by quick rejection of the IAAD diet.


2021 ◽  
Author(s):  
Johanna K Kostka ◽  
Sebastian H Bitzenhofer

Processing in primary sensory areas is influenced by centrifugal inputs from higher brain areas, providing information about behavioral state, attention, or context. Activity in the olfactory bulb, the first central processing stage of olfactory information, is dynamically modulated by direct projections from a variety of areas in adult mice. Despite the early onset of olfactory sensation compared to other senses, the development of centrifugal inputs to the olfactory bulb remains largely unknown. Using retrograde tracing across development, we show that centrifugal projections to the olfactory bulb are established during the postnatal period in an area-specific manner. While feedback projections from the piriform cortex are already present shortly after birth, they strongly increase in number during postnatal development with an anterior-posterior gradient. Contralateral projections from the anterior olfactory nucleus are present at birth but only appeared postnatally for the nucleus of the lateral olfactory tract. Numbers of olfactory bulb projecting neurons from the lateral entorhinal cortex, ventral hippocampus, and cortical amygdala show a sudden increase at the beginning of the second postnatal week and a delayed development compared to more anterior areas. These anatomical data suggest that limited top-down influence on odor processing in the olfactory bulb may be present at birth, but strongly increases during postnatal development and is only fully established later in life.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Brett S. East ◽  
Gloria Fleming ◽  
Samantha Vervoordt ◽  
Prachi Shah ◽  
Regina M. Sullivan ◽  
...  

AbstractOdor perception can both evoke emotional states and be shaped by emotional or hedonic states. The amygdala complex plays an important role in recognition of, and response to, hedonically valenced stimuli, and has strong, reciprocal connectivity with the primary olfactory (piriform) cortex. Here, we used differential odor-threat conditioning in rats to test the role of basolateral amygdala (BLA) input to the piriform cortex in acquisition and expression of learned olfactory threat responses. Using local field potential recordings, we demonstrated that functional connectivity (high gamma band coherence) between the BLA and posterior piriform cortex (pPCX) is enhanced after differential threat conditioning. Optogenetic suppression of activity within the BLA prevents learned threat acquisition, as do lesions of the pPCX prior to threat conditioning (without inducing anosmia), suggesting that both regions are critical for acquisition of learned odor threat responses. However, optogenetic BLA suppression during testing did not impair threat response to the CS+ , but did induce generalization to the CS−. A similar loss of stimulus control and threat generalization was induced by selective optogenetic suppression of BLA input to pPCX. These results suggest an important role for amygdala-sensory cortical connectivity in shaping responses to threatening stimuli.


Neurology ◽  
2021 ◽  
pp. 10.1212/WNL.0000000000013033
Author(s):  
Ezequiel Gleichgerrcht ◽  
Daniel L. Drane ◽  
Simon Sean Keller ◽  
Kathryn A. Davis ◽  
Robert Gross ◽  
...  

Objective:To determine the association between surgical lesions of distinct grey and white structures and connections with favorable post-operative seizure outcomes.Methods:Patients with drug-resistant temporal lobe epilepsy (TLE) from three epilepsy centers were included. We employed a voxel-based and connectome-based mapping approach to determine the association between favorable outcomes and surgery-induced temporal lesions. Analyses were conducted controlling for multiple confounders, including total surgical resection/ablation volume, hippocampal volumes, side of surgery, and site where the patient was treated.Results:The cohort included 113 patients with TLE [54 women; 86 right-handed; 16.5 (SD = 11.9) age at seizure onset, 54.9% left] who were 61.1% free of disabling seizures (Engel class 1) at follow-up. Postoperative seizure freedom in TLE was associated with 1) surgical lesions that targeted the hippocampus as well as the amygdala-piriform cortex complex and entorhinal cortices; 2) disconnection of temporal, frontal, and limbic regions through loss of white matter tracts within the uncinate fasciculus, anterior commissure, and fornix; and 3) functional disconnection of the frontal (superior and middle frontal gyri, orbitofrontal region) and temporal (superior and middle pole) lobes.Conclusions:Better postoperative seizure freedom are associated with surgical lesions of specific structures and connections throughout the temporal lobes. These findings shed light on the key components of epileptogenic networks in TLE and constitute a promising source of new evidence for future improvements in surgical interventions.Classification of Evidence:This study provides Class II evidence that for patients with temporal lobe epilepsy, postoperative seizure freedom is associated with surgical lesions of specific temporal lobe structures and connections.


Sign in / Sign up

Export Citation Format

Share Document