Finite-sample properties of the instrumental-variables estimator for dynamic simultaneous-equation subsystems with ARMA disturbances

1986 ◽  
Vol 32 (3) ◽  
pp. 333-366 ◽  
Author(s):  
Julia Campos
2017 ◽  
Vol 6 (1) ◽  
Author(s):  
Samuele Centorrino ◽  
Frederique Feve ◽  
Jean-Pierre Florens

AbstractWe present a review on the implementation of regularization methods for the estimation of additive nonparametric regression models with instrumental variables. We consider various versions of Tikhonov, Landweber-Fridman and Sieve (Petrov-Galerkin) regularization. We review data-driven techniques for the sequential choice of the smoothing and the regularization parameters. Through Monte Carlo simulations, we discuss the finite sample properties of each regularization method for different smoothness properties of the regression function. Finally, we present an application to the estimation of the Engel curve for food in a sample of rural households in Pakistan, where a partially linear specification is described that allows one to embed other exogenous covariates.


1992 ◽  
Vol 8 (4) ◽  
pp. 452-475 ◽  
Author(s):  
Jeffrey M. Wooldridge

A test for neglected nonlinearities in regression models is proposed. The test is of the Davidson-MacKinnon type against an increasingly rich set of non-nested alternatives, and is based on sieve estimation of the alternative model. For the case of a linear parametric model, the test statistic is shown to be asymptotically standard normal under the null, while rejecting with probability going to one if the linear model is misspecified. A small simulation study suggests that the test has adequate finite sample properties, but one must guard against over fitting the nonparametric alternative.


2013 ◽  
Vol 805-806 ◽  
pp. 1948-1951
Author(s):  
Tian Jin

The non-homogeneous Poisson model has been applied to various situations, including air pollution data. In this paper, we propose a kernel based nonparametric estimation for fitting the non-homogeneous Poisson process data. We show that our proposed estimator is-consistent and asymptotically normally distributed. We also study the finite-sample properties with a simulation study.


2019 ◽  
Vol 36 (2) ◽  
pp. 347-366 ◽  
Author(s):  
José Luis Montiel Olea

This article studies a classical problem in statistical decision theory: a hypothesis test of a sharp null in the presence of a nuisance parameter. The main contribution of this article is a characterization of two finite-sample properties often deemed reasonable in this environment: admissibility and similarity. Admissibility means that a test cannot be improved uniformly over the parameter space. Similarity requires the null rejection probability to be unaffected by the nuisance parameter.The characterization result has two parts. The first part—established by Chernozhukov, Hansen, and Jansson (2009, Econometric Theory 25, 806–818)—states that maximizing weighted average power (WAP) subject to a similarity constraint suffices to generate admissible, similar tests. The second part—hereby established—states that constrained WAP maximization is (essentially) a necessary condition for a test to be admissible and similar. The characterization result shows that choosing an admissible, similar test is tantamount to selecting a particular weight function to report weighted average power. This result applies to full vector inference with a nuisance parameter, not to subvector inference.The article also revisits the theory of testing in the instrumental variables model. Specifically—and in light of the relevance of the weighted average power criterion in the main theoretical result—the article suggests a weight function for the structural parameters of the homoskedastic instrumental variables model, based on the priors proposed by Chamberlain (2007). The corresponding test is, by construction, admissible and similar. In addition, the test is shown to have finite- and large-sample properties comparable to those of the conditional likelihood ratio test.


2015 ◽  
Vol 26 (4) ◽  
pp. 1912-1924 ◽  
Author(s):  
Jeong Youn Lim ◽  
Jong-Hyeon Jeong

We propose a cause-specific quantile residual life regression where the cause-specific quantile residual life, defined as the inverse of the cumulative incidence function of the residual life distribution of a specific type of events of interest conditional on a fixed time point, is log-linear in observable covariates. The proposed test statistic for the effects of prognostic factors does not involve estimation of the improper probability density function of the cause-specific residual life distribution under competing risks. The asymptotic distribution of the test statistic is derived. Simulation studies are performed to assess the finite sample properties of the proposed estimating equation and the test statistic. The proposed method is illustrated with a real dataset from a clinical trial on breast cancer.


Sign in / Sign up

Export Citation Format

Share Document