Curie point and cluster magnetism in hydrogenated NiCu alloys

1977 ◽  
Vol 6 ◽  
pp. 302-305 ◽  
Author(s):  
H.-U. Daniel ◽  
H.J. Bauer
Keyword(s):  
1975 ◽  
Vol 18 (1-2) ◽  
pp. 125-137 ◽  
Author(s):  
J. B. Sousa ◽  
M. R. Chaves ◽  
M. F. Pinheiro ◽  
R. S. Pinto

1972 ◽  
Vol 2 (4) ◽  
pp. L83-L86 ◽  
Author(s):  
J B Sousa ◽  
M R Chaves ◽  
R S Pinto ◽  
M F Pinheiro
Keyword(s):  

1971 ◽  
Vol 32 (C1) ◽  
pp. C1-415-C1-416 ◽  
Author(s):  
L. ALBERTS ◽  
M. BOHLMANN ◽  
H. L. ALBERTS

Author(s):  
Katrin Jahns ◽  
Anke S. Ulrich ◽  
Clara Schlereth ◽  
Lukas Reiff ◽  
Ulrich Krupp ◽  
...  

AbstractDue to the inhibiting behavior of Cu, NiCu alloys represent an interesting candidate in carburizing atmospheres. However, manufacturing by conventional casting is limited. It is important to know whether the corrosion behavior of conventionally and additively manufactured parts differ. Samples of binary NiCu alloys and Monel Alloy 400 were generated by laser powder bed fusion (LPBF) and exposed to a carburizing atmosphere (20 vol% CO–20% H2–1% H2O–8% CO2–51% Ar) at 620 °C and 18 bar for 960 h. Powders and printed samples were investigated using several analytic techniques such as EPMA, SEM, and roughness measurement. Grinding of the material after building (P1200 grit surface finish) generally reduced the metal dusting attack. Comparing the different compositions, a much lower attack was found in the case of the binary model alloys, whereas the technical Monel Alloy 400 showed a four orders of magnitude higher mass loss during exposure despite its Cu content of more than 30 wt%.


1969 ◽  
Vol 5 (3) ◽  
pp. 298-299 ◽  
Author(s):  
G. Lewicki
Keyword(s):  

1953 ◽  
Vol 49 (1) ◽  
pp. 115-129 ◽  
Author(s):  
A. B. Lidiard

ABSTRACTThe theory of collective electron ferromagnetism given by Stoner applies to a system of electrons in a single energy band; for iron, cobalt and nickel this is identified with the band of states derived from atomic 3d functions. To bring in the generally assumed overlapping of the 3d band by the wide 4s band in these metals, the theory has been extended to take account of the transfer of electrons from 3d to 4s states with change of temperature. A previous calculation of this transfer effect must be regarded as inadequate, for the part played by the exchange energy in determining the distribution of electrons between the two sets of states was omitted. The general equations are derived in § 2 and used as a basis for discussion of the properties of nickel-copper alloys at absolute zero in § 3. In §§4 and 5 numerical results are presented which show the effect of the overlapping 4s band on the magnetic properties of a system such as nickel both above and below its Curie point. Comparison with the measured paramagnetic susceptibility of pure nickel above the Curie point strongly suggests that for this metal the overlapping 4s band has only a minor influence, although in principle the effect could be very large (cf. Fig. 4). This result is not unambiguous, however, because values thus inferred for the two unknown parameters lead to inaccurate predictions below the Curie point. First, the predicted values for the spontaneous magnetization are too small. Secondly, the theory demands that the nickel-copper alloys should only be ferromagnetic below a copper content of about 20 %, whereas experimentally the limit is known to be about 60 %. In conclusion, it is suggested that the implicit assumption of Stoner's theory that the exchange integrals between all pairs of 3d states are equal to one another is a more serious restriction on the theory than the consideration of only a single energy band.


Sign in / Sign up

Export Citation Format

Share Document