cu content
Recently Published Documents


TOTAL DOCUMENTS

719
(FIVE YEARS 205)

H-INDEX

36
(FIVE YEARS 6)

2022 ◽  
Vol 28 ◽  
pp. 101651
Author(s):  
Guipeng Li ◽  
Guihong Song ◽  
Nan Wang ◽  
Fang Hu ◽  
Yusheng Wu ◽  
...  

2022 ◽  
Vol 12 ◽  
Author(s):  
Simon Blotevogel ◽  
Priscia Oliva ◽  
Laurence Denaix ◽  
Stéphane Audry ◽  
Jerome Viers ◽  
...  

Even though copper (Cu) is an essential plant nutrient, it can become toxic under certain conditions. Toxic effects do not only depend on soil Cu content, but also on environmental and physiological factors, that are not well understood. In this study, the mechanisms of Cu bioavailability and the homeostasis of Vitis vinifera L. cv. Tannat were investigated under controlled conditions, using stable Cu isotope analysis. We measured Cu concentrations and δ65Cu isotope ratios in soils, soil solutions, roots, and leaves of grapevine plants grown on six different vineyard soils, in a 16-week greenhouse experiment. The mobility of Cu in the soil solutions was controlled by the solubility of soil organic matter. No direct relationship between Cu contents in soils or soil solutions and Cu contents in roots could be established, indicating a partly homeostatic control of Cu uptake. Isotope fractionation between soil solutions and roots shifted from light to heavy with increasing Cu exposure, in line with a shift from active to passive uptake. Passive uptake appears to exceed active uptake for soil solution concentrations higher than 270 μg L–1. Isotope fractionation between roots and leaves was increasingly negative with increasing root Cu contents, even though the leaf Cu contents did not differ significantly. Our results suggest that Cu isotope analysis is a sensitive tool to monitor differences in Cu uptake and translocation pathways even before differences in tissue contents can be observed.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 426
Author(s):  
Zhao Yang ◽  
Xiaolong He ◽  
Bin Li ◽  
Andrej Atrens ◽  
Xuyue Yang ◽  
...  

The influence of Si, Cu, B, and trace alloying elements on the conductivity of aluminum die cast 12 (ADC12) alloy was investigated. The conductivity decreased linearly with increasing volume fraction of the Si phase attributed to a linear decrease of the volume of the more conductive Al phase through a rule of mixtures. The conductivity also decreased with increasing Cu content, between 0~3%. The conductivity increased with increasing B content, reached the peak at 0.02% B and thereafter decreased somewhat. The mechanism was that B reacted with the transition element in the Al phase to form boride, decreasing the transition element concentration in the Al lattice, and decreasing the lattice constant. The thermal conductivity, λ, was related to the electrical conductivity, σ, by means of λ=LTσ+λg, where L is the apparent Lorentz constant, 1.86 × 10−8; T is the absolute temperature, 293 K; λg is the lattice conductivity, 42.3 W/(m·K).


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262279
Author(s):  
Agnieszka Zawadzka ◽  
Anna Janczewska ◽  
Joanna Kobus-Cisowska ◽  
Marcin Dziedziński ◽  
Marek Siwulski ◽  
...  

This study aimed to evaluate the effect of cultivation conditions in the context of light on the retention of selected vitamins, minerals and polyphenols in the stem and cap of the oyster mushroom (Pleurotus ostreatus L.). Additionally, the effect of the retention of bioactive components on the antioxidant activity of mushroom extracts was evaluated, taking into account the morphological part. Oyster mushrooms grown in the light of 200 lux had higher riboflavin content compared to mushrooms exposed to the light of lower intensity. The thiamine content of the mushrooms dropped with decreasing light intensity during cultivation. The content of biologically active compounds was found to be equal in the stem and the cap. In the case of riboflavin, it was shown that its contents in cap fractions, irrespective of the cultivation method, was statistically significantly higher than in stems. The mineral composition of caps and stems differed from each other. No differences in Zn and Cu content between the morphological parts of the mushroom studied were found. However, it was shown that the stems, regardless of the type of light, contained less iron, magnesium and sodium. Thus, it was observed that limited light exposure caused an increase in the content of total polyphenolic compounds, which did not correlate with antioxidant activity. There was no effect of the light on the antioxidant activity of mushrooms. It was also shown that stem extracts had higher antioxidant activity compared to the extracts obtained from the caps. This findings point to the possibility and potentail of use both fraction of mushrooms in the new food products development.


2021 ◽  
Vol 8 (1) ◽  
pp. 4
Author(s):  
Cristina Favieres ◽  
José Vergara ◽  
Vicente Madurga

The magnetic and transport properties of pulsed laser-deposited Co100−x–Cux thin films were tailored through their nano-morphology and composition by controlling for the deposition geometry, namely normal or oblique deposition, and their Cu content. All films were composed of an amorphous Co matrix and a textured growth of Cu nanocrystals, whose presence and size d increased as x increased. For x = 50, all films were superparamagnetic, regardless of deposition geometry. The normally deposited films showed no in-plane magnetic anisotropy. On the contrary, controllable in-plane uniaxial magnetic anisotropy in both direction and magnitude was generated in the obliquely deposited films. The magnetic anisotropy field Hk remained constant for x = 0, 5 and 10, Hk ≈ 35 kAm−1, and decreased to 28 and 26 kAm−1 for x = 20 and 30, respectively. This anisotropy had a magnetostatic origin due to a tilted nano-sheet morphology. In the normally deposited films, the coercive field Hc increased when x increased, from 200 (x = 0) to 1100 Am−1 (x = 30). In contrast, in obliquely deposited films, Hc decreased from 1500 (x = 0) to 100 Am−1 (x = 30) as x increased. Activation energy spectra corresponding to structural relaxation phenomena in obliquely deposited films were obtained from transport property measurements. They revealed two peaks, which also depended on their nano-morphology and composition.


Metals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 33
Author(s):  
Duy Le Han ◽  
Yu-An Shen ◽  
Fupeng Huo ◽  
Hiroshi Nishikawa

The low melting temperature In-48Sn alloy is a promising candidate for flexible devices. However, the joint strength of the In-48Sn alloy on the Cu substrate was low due to the rapid diffusion of Cu into the In-rich alloy. In this study, the effect of the addition of xCu (x = 2.0 and 8.0 wt.%) on wettability, interfacial reaction, and mechanical strength of the In-Sn-xCu/Cu joint is analyzed. The results demonstrate that both the In-48Sn and In-Sn-xCu alloys exhibit good wettability on the Cu substrate and that the contact angle increases with an increase in the Cu content. Furthermore, fine grains are observed in the alloy matrix of the In-Sn-xCu/Cu joint and the interfacial intermetallic compound (IMC) comprising the Cu-rich Cu6(In,Sn)5 near the Cu substrate and the Cu-deficient Cu(In,Sn)2 near the solder side. The In-Sn-2.0Cu/Cu joint with fine microstructure and a small amount of IMC in the alloy matrix shows the highest average shear strength of 16.5 MPa. Although the In-Sn-8.0Cu/Cu joint also exhibits fine grains, the presence of large number of voids and rough interfacial IMC layer causes the formation of additional stress concentration points, thereby reducing the average shear strength of the joint.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jiajun Li ◽  
Yu Dong ◽  
Zemin Wang ◽  
Min Liu ◽  
Yi Ding ◽  
...  

This study focused on the role of Cu in the microstructure characteristics and tensile properties of novel L12-strengthened multicomponent high-entropy alloys (HEAs). A series of as-cast (Al7.5Co21.9Cr10.9Ti5.0Fe21.9Ni32.8)100-xCux (x = 0.5, 2.5, 5.0) high-entropy alloys (HEAs) were prepared. The microstructures and mechanical properties of HEAs were investigated using X-ray diffraction, a scanning electron microscope, a transmission electron microscope, and atom probe tomography. The XRD patterns of HEAs confirmed that all HEAs consisted of the FCC phase and the L12 phase. As Cu content increased, the dendritic was gradually coarsened. The spherical L12 size decreased, and number density increased in the interdendritic regions (ID). The L12 mainly contained Ni, Ti, Al, and Cu. The acicular L12 size increased and was continuously distributed in the dendritic regions (DR) as the Cu content increased gradually. The ultimate strength and elongation decreased from 1,002 MPa, 20.0% to 906 MPa, 13.1%, respectively. The segregation rates of Ti, Cu, and Al increased in the DR and ID. The L12 nano-precipitates in the DR become denser and finer, while the L12 islets in the ID region increase and elongate. Large lattice distortion caused by Cu addition weakens the strength of the L12-FCC phase boundary, leading to the premature fracture of the three HEAs, which were the main reasons for the decreases in strength and ductility as Cu content increased.


Author(s):  
Uğur BÜYÜK ◽  
Emin ÇADIRLI ◽  
Hasan KAYA ◽  
M. İzzettin YILMAZER

In this work, influences of composition (Cu content) and growth velocity (V) on the microstructure (dendritic spacing) of Al–Mn–Cu ternary alloys have been investigated. Al–1.9Mn–xCu (x=0.5, 1.5 and 5 wt. %) alloys were prepared using metals of 99.90% high purity in the vacuum atmosphere. These alloys were directionally solidified upwards under various growth velocities (8.3–978 m/s) using a Bridgman-type directional solidification furnace at a constant temperature gradient (7.1 K/mm). Measurements of primary dendrite arm spacing () of the samples were carried out and then expressed as functions of growth velocity and Cu content. Especially, cell-dendritic transition was detected for low growth velocity (41.6 m/s) for alloys containing 0.5 and 1.5Cu. It has been found that the values of  decrease with increasing V and decreasing Cu content. Keywords: Aluminum alloys, Solidification, Cell-dendritic transition, Dendrite arm spacing


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7807
Author(s):  
Lukasz Hawelek ◽  
Tymon Warski ◽  
Adrian Radon ◽  
Adam Pilsniak ◽  
Wojciech Maziarz ◽  
...  

In this work, based on the thermodynamic prediction, the comprehensive studies of the influence of Cu for Fe substitution on the crystal structure and magnetic properties of the rapidly quenched Fe85B15 alloy in the ribbon form are performed. Using thermodynamic calculations, the parabolic shape dependence of the ΔGamoprh with a minimum value at 0.6% of Cu was predicted. The ΔGamoprh from the Cu content dependence shape is also asymmetric, and, for Cu = 0% and Cu = 1.5%, the same ΔGamoprh value is observed. The heat treatment optimization process of all alloys showed that the least lossy (with a minimum value of core power losses) is the nanocomposite state of nanocrystals immersed in an amorphous matrix obtained by annealing in the temperature range of 300–330 °C for 20 min. The minimum value of core power losses P10/50 (core power losses at 1T@50Hz) of optimally annealed Fe85-xCuxB15 x = 0,0.6,1.2% alloys come from completely different crystallization states of nanocomposite materials, but it strongly correlates with Cu content and, thus, a number of nucleation sites. The TEM observations showed that, for the Cu-free alloy, the least lossy crystal structure is related to 2–3 nm short-ordered clusters; for the Cu = 0.6% alloy, only the limited value of several α-Fe nanograins are found, while for the Cu-rich alloy with Cu = 1.2%, the average diameter of nanograins is about 26 nm, and they are randomly distributed in the amorphous matrix. The only high number of nucleation sites in the Cu = 1.2% alloy allows for a sufficient level of grains’ coarsening of the α-Fe phase that strongly enhances the ferromagnetic exchange between the α-Fe nanocrystals, which is clearly seen with the increasing value of saturation induction up to 1.7T. The air-annealing process tested on studied alloys for optimal annealing conditions proves the possibility of its use for this type of material.


Sign in / Sign up

Export Citation Format

Share Document