Heme biosynthesis pathway regulation in a model of hepatocarcinogenesis pre-initiation

Author(s):  
César F. Polo ◽  
Elba S. Vazquez ◽  
Fabiana Caballero ◽  
Esther Gerez ◽  
Alcira M.del C. Batlle
2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Tohru Fujiwara ◽  
Hideo Harigae

Heme is a prosthetic group comprising ferrous iron (Fe2+) and protoporphyrin IX and is an essential cofactor in various biological processes such as oxygen transport (hemoglobin) and storage (myoglobin) and electron transfer (respiratory cytochromes) in addition to its role as a structural component of hemoproteins. Heme biosynthesis is induced during erythroid differentiation and is coordinated with the expression of genes involved in globin formation and iron acquisition/transport. However, erythroid and nonerythroid cells exhibit distinct differences in the heme biosynthetic pathway regulation. Defects of heme biosynthesis in developing erythroblasts can have profound medical implications, as represented by sideroblastic anemia. This review will focus on the biology of heme in mammalian erythroid cells, including the heme biosynthetic pathway as well as the regulatory role of heme and human disorders that arise from defective heme synthesis.


Haematologica ◽  
2014 ◽  
Vol 99 (10) ◽  
pp. e208-e210 ◽  
Author(s):  
L. Rheinemann ◽  
T. S. Seeger ◽  
J. Wehrle ◽  
H. L. Pahl

Diagnostics ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1343
Author(s):  
Elena Di Pierro ◽  
Michele De Canio ◽  
Rosa Mercadante ◽  
Maria Savino ◽  
Francesca Granata ◽  
...  

Porphyrias are a group of diseases that are clinically and genetically heterogeneous and originate mostly from inherited dysfunctions of specific enzymes involved in heme biosynthesis. Such dysfunctions result in the excessive production and excretion of the intermediates of the heme biosynthesis pathway in the blood, urine, or feces, and these intermediates are responsible for specific clinical presentations. Porphyrias continue to be underdiagnosed, although laboratory diagnosis based on the measurement of metabolites could be utilized to support clinical suspicion in all symptomatic patients. Moreover, the measurement of enzymatic activities along with a molecular analysis may confirm the diagnosis and are, therefore, crucial for identifying pre-symptomatic carriers. The present review provides an overview of the laboratory assays used most commonly for establishing the diagnosis of porphyria. This would assist the clinicians in prescribing appropriate diagnostic testing and interpreting the testing results.


2020 ◽  
Vol 16 (5) ◽  
pp. e1008499
Author(s):  
Amy Bergmann ◽  
Katherine Floyd ◽  
Melanie Key ◽  
Carly Dameron ◽  
Kerrick C. Rees ◽  
...  

2019 ◽  
Vol 5 (9) ◽  
pp. eaaw6127 ◽  
Author(s):  
Pengcheng Wang ◽  
Madhav Sachar ◽  
Jie Lu ◽  
Amina I. Shehu ◽  
Junjie Zhu ◽  
...  

Erythropoietic protoporphyria (EPP) is an inherited disease caused by loss-of-function mutations of ferrochelatase, an enzyme in the heme biosynthesis pathway that converts protoporphyrin IX (PPIX) into heme. PPIX accumulation in patients with EPP leads to phototoxicity and hepatotoxicity, and there is no cure. Here, we demonstrated that the PPIX efflux transporter ABCG2 (also called BCRP) determines EPP-associated phototoxicity and hepatotoxicity. We found that ABCG2 deficiency decreases PPIX distribution to the skin and therefore prevents EPP-associated phototoxicity. We also found that ABCG2 deficiency protects against EPP-associated hepatotoxicity by modulating PPIX distribution, metabolism, and excretion. In summary, our work has uncovered an essential role of ABCG2 in the pathophysiology of EPP, which suggests the potential for novel strategies in the development of therapy for EPP.


2019 ◽  
Vol 21 (15) ◽  
pp. 7932-7940 ◽  
Author(s):  
Navneet Bung ◽  
Arijit Roy ◽  
U. Deva Priyakumar ◽  
Gopalakrishnan Bulusu

Hydroxymethylbilane synthase (HMBS), the third enzyme in the heme biosynthesis pathway, catalyzes the formation of 1-hydroxymethylbilane (HMB) by a stepwise polymerization of four molecules of porphobilinogen (PBG) using the dipyrromethane (DPM) cofactor.


Sign in / Sign up

Export Citation Format

Share Document