laboratory work
Recently Published Documents


TOTAL DOCUMENTS

954
(FIVE YEARS 183)

H-INDEX

26
(FIVE YEARS 3)

2022 ◽  
Vol 16 (2) ◽  
pp. 94-104
Author(s):  
A. D. Zaikin ◽  
I. I. Suhanov

The physics laboratory-works creating and operating computer simulations experience is described. A significant amount of laboratory works can be classified as a “black box”. The studied physical phenomenon is hidden from direct observation, the control is carried out by means of electrical measuring devices. It is difficult to distinguish physical reality from its imitation when performing such work, so the virtualization of this one does not require realistic images. The schematic representation of the laboratory installation greatly simplifies the process of creating a simulator. A unique set of installation parameters is formed for each student performing laboratory work on the simulator, which contributes to the independence of the student's work. These parameters are stored in Google Sheets. Their transfer to the laboratory work’s html-template is carried out in encrypted form through the Google Apps Script service. Virtual laboratory work is implemented as a cross-platform web application.


Author(s):  
Sjors Verstege ◽  
Wander Lamot ◽  
Jean-Paul Vincken ◽  
Julia Diederen
Keyword(s):  

2022 ◽  
Vol 961 (1) ◽  
pp. 012066
Author(s):  
Mohammed M Qasim ◽  
Mazin B Abdul Rahman

Abstract Slurry infiltrated fiber concrete” composites (SIFCON) are a novel type of concrete with improved strength, ductility, and crack resistance. In this study, infiltrating fibers (SIFCON) were used to reinforce of specimens of ferrocement one way ribbed slabs. The laboratory work consists of cast and testing of eight specimens with dimensions of 750 mm in length, 500 mm in width and 50 mm in depth. These samples have the same wire mesh reinforcement and the same shape as the ferrocement slabs. Two reference ferrocement slab without ribs contains SIFCON and six ferrocement slabs with ribs contains SIFCON. The variables were the volumetric ratio of fibers in the ribs, which were (2, 4 and 6)% and type of steel fiber (hook-end and hybrid fiber). Hybrid fibers contain two type of steel fiber (hook-end and micro steel fiber) with equal ratio. All samples were tested under line load up to failure with mid deflections for each test with simple supported. The results of the test showed that the presence of steel fibers in the ferrocement ribs, for both types of steel fibers, improves the resistance to the final loads and the ability to reduce deflection and increases the ductility and stiffness significantly.


2021 ◽  
Vol 4 (4) ◽  
Author(s):  
Ivan A. Khyzhniak

The potential use of digital laboratories is constantly growing every year, as such a device allows you to conduct research in such fields as biology, physics, chemistry and other natural sciences. It is proved that the use of modern equipment increases the efficiency of laboratory classes in schools. Today, there are a large number of educational digital laboratories, which find many areas of use, from laboratory work at school to laboratories at universities. However, if you analyze these digital labs, you can see that they do not have a user-friendly interface and settings. The purpose of this work is to review existing solutions, as well as find solutions to create an improved version of digital training laboratories. The main disadvantage of existing solutions is the lack of data transfer via Wi-Fi or Bluetooth, as well as connection to a computer or smartphone, which could significantly improve the process of working with such a device. One of the solutions to this problem is the creation of digital training laboratories based on the ESP-32 microcontroller. After analyzing the existing digital laboratories, we can conclude that this area needs improvement, as existing technologies allow to create much better devices in terms of ease of use and opportunities for educational purposes. Bluetooth and Wi-Fi are the main elements, the addition of which will significantly improve digital laboratories. One such solution is the ESP-32 microcontroller, as it includes these modules, and its technical characteristics allow you to create a device that will collect data simultaneously from many connected sensors. The creation of a digital laboratory with such characteristics will significantly improve the process of laboratory work in schools and universities, as well as allow more organized distance learning online, which will have a positive impact on the educational process in schools and universities.


2021 ◽  
Vol 13 (3) ◽  
pp. 2106-2113
Author(s):  
Soka Hadiati ◽  
Eti Sukadi ◽  
Adi Pramuda

Higher-order thinking skills (HOTS) are one of the important components that students must master to be successful in the 21st century. The HOTS of students in several regions in Indonesia is low because HOTS-based learning and the instruments are not appropriate. This study aims to determine the validity and reliability of the HOTS assessment content, empirical, and constructs referring to bloom theory in laboratory work. The development model used is the Plomp development model, which consists of five stages: initial investigation, design, realization/construction, test, evaluation and revision, and implementation. The HOTS assessment was proven relevant by experts and then distributed to 70 Physics Education students. The HOTS assessment was analyzed by rash model theory analysis with the Winstep program to obtain empirical validity. SEM (Structural Equation Model) was used to obtain construct validity. The results showed that the HOTS assessment was valid and reliable. The results show that the assessment has been able to measure every aspect of HOTS well in laboratory work so that it can be used.


2021 ◽  
Vol 11 (12) ◽  
pp. 816
Author(s):  
Ilona Södervik ◽  
Nina Katajavuori ◽  
Karmen Kapp ◽  
Patrick Laurén ◽  
Monica Aejmelaeus ◽  
...  

The learning of laboratory skills is essential in science education, but students often get too little individual guidance in this area. Augmented reality (AR) technologies are a promising tool to tackle this challenge and promote students’ high-level learning and performance in science laboratories. Thus, the purpose of this study was (1) to design an AR-assisted learning environment to support individual knowledge construction, (2) to investigate students’ learning processes and learning outcomes and (3) to examine the usability of the system. Pharmacy students (n = 16) were assigned to experimental (n = 10) and control (n = 6) groups and performed the same laboratory work together with pre- and post-tests. The experimental group worked with AR glasses that provided additional support and timely guidance during the work with additional info-screens, questions related to choosing correct reagents and laboratory tools and think-aloud questions, whereas the control group worked in a traditional laboratory context. The results showed that AR was more effective in fostering performance in the science laboratory compared to traditional laboratory instruction and prevented most of the mistakes. The AR group considered the guidance and feedback provided by AR to be beneficial for their learning. However, no apparent differences were found in tasks measuring students’ understanding of the content knowledge. Thus, an AR environment embedded with supportive tools could partly replace the teacher in science teaching laboratories by providing individual and timely guidance for the students.


2021 ◽  
Author(s):  
Clement Fabbri ◽  
Haitham Ali Al Saadi ◽  
Ke Wang ◽  
Flavien Maire ◽  
Carolina Romero ◽  
...  

Abstract Polymer flooding has long been proposed to improve sweep efficiency in heterogeneous reservoirs where polymer enhances cross flow between layers and forces water into the low permeability layers, leading to more homogeneous saturation profile. Although this approach could unlock large volumes of by-passed oil in layered carbonate reservoirs, compatibility of polymer solutions with high salinity - high temperature carbonate reservoirs has been hindering polymer injection projects in such harsh conditions. The aim of this paper is to present the laboratory work, polymer injection field test results and pilot design aimed to unlock target tertiary oil recovery in a highly heterogeneous mixed to oil-wet giant carbonate reservoir. This paper focuses on a highly layered limestone reservoir with various levels of cyclicity in properties. This reservoir may be divided in two main bodies, i.e., an Upper zone and a Lower zone with permeability contrast of up to two orders of magnitude. The main part of the reservoir is currently under peripheral and mid-flank water injection. Field observations show that injected water tends to channel quickly through the Upper zone along the high permeability layers and bypass the oil in the Lower zone. Past studies have indicated that this water override phenomenon is caused by a combination of high permeability contrast and capillary forces which counteract gravity forces. In this setting, adequate polymer injection strategy to enhance cross-flow between these zones is investigated, building on laboratory and polymer injection test field results. A key prerequisite for defining such EOR development scenario is to have representative static and dynamic models that captures the geological heterogeneity of this kind of reservoirs. This is achieved by an improved and integrated reservoir characterization, modelling and water injection history matching procedure. The history matched model was used to investigate different polymer injection schemes and resulted in an optimum pilot design. The injection scheme is defined based on dynamic simulations to maximize value, building on results from single-well polymer injection test, laboratory work and on previous published work, which have demonstrated the potential of polymer flooding for this reservoir. Our study evidences the positive impact of polymer propagation at field scale, improving the water-front stability, which is a function of pressure gradient near producer wells. Sensitivities to the position and number of polymer injectors have been performed to identify the best injection configuration, depending on the existing water injection scheme and the operating constraints. The pilot design proposed builds on laboratory work and field monitoring data gathered during single-well polymer injection field test. Together, these elements represent building blocks to enable tertiary polymer recovery in giant heterogeneous carbonate reservoirs with high temperature - high salinity conditions.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Matthias Ochs ◽  
Julia Schipke

AbstractThe intention of this short primer is to raise your appetite for proper quantitative assessment of lung micro-structure. The method of choice for obtaining such data is stereology. Rooted in stochastic geometry, stereology provides simple and efficient tools to obtain quantitative three-dimensional information based on measurements on nearly two-dimensional microscopic sections. In this primer, the basic concepts of stereology and its application to the lung are introduced step by step along the workflow of a stereological study. The integration of stereology in your laboratory work will help to improve its quality. In a broader context, stereology may also be seen as a contribution to good scientific practice.


Antibiotics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1457
Author(s):  
Anru Zhang ◽  
Xiaojuan Wang ◽  
Xinyue Liang ◽  
Chaoe Zhou ◽  
Qi Wang ◽  
...  

Rapid and accurate detection can help optimize patient treatment and improve infection control against nosocomial carbapenemase-producing organisms (CPO). In this study, a total of 217 routine clinical isolates (Enterobacterales and A. baumannii), including 178 CPOs and 39 non-CPOs, were tested to evaluate the performance of six phenotypic carbapenemase detection and classification assays, i.e., BD Phoenix CPO detect panel, Rapidec Carba-NP, O.K.N detection kit, and three carbapenem inactivation methods (CIMs; mCIM, eCIM, sCIM). The overall detection sensitivity and specificity were 98.78% (95.21–99.79%) and 79.49% (63.06–90.13%), respectively, for the BD phoenix CPO P/N test; 91.93% (86.30–95.45%) and 100% (88.83–100%), respectively, for the Rapidec Carba-NP; 98.06% (94.00–99.50%) and 97.44% (84.92–99.87%), respectively, for mCIM; and 96.89% (92.52–98.85%) and 94.87% (81.37–99.11%), respectively, for sCIM. The classification sensitivity and specificity for the BD phoenix CPO Ambler test, the O.K.N detection kit, and the mCIM and eCIM were 56.71% (48.75–64.34%) and 94.87% (81.37–99.11%), 99.28% (95.43–99.96%) and 100% (88.83–100%), and 92.90% (87.35–96.23%) and 97.44% (84.92–99.87%), respectively. All detection assays were reliable in detecting carbapenemase. However, the Rapidec Carba-NP and mCIM were insufficient in detecting OXA-48-like enzymes. The BD phoenix CPO detect panel had a strong ability to detect carbapenemase but failed to classify 48/59 (81.36%) KPC, 8/52 (15.38%) NDM, 8/22 (36.36%) OXA-23-like, and 6/11 (54.55%) dual enzymes. The O.K.N detection kit accurately detected and differentiated KPC, NDM, and OXA-48-like enzymes existing alone or in combination. The results of this study will support reliable laboratory work tools and promote therapeutic and infection control decisions.


Sign in / Sign up

Export Citation Format

Share Document