Numerical experiments with the one-dimensional non-linear simplex search

1991 ◽  
Vol 18 (6) ◽  
pp. 497-506
Author(s):  
Ayoade Kuye
2009 ◽  
Vol 50 ◽  
pp. 328-333
Author(s):  
Karolis Petrauskas

Straipsnyje pateikiamas vienmatis biojutiklio su perforuota ir selektyvia membrana modelis. Šis modelis sudarytas pakeičiant perforuotą membraną dviem homogeniškais sluoksniais atitinkamai membranos dalims, kur skylutės yra užpildytos fermento ir kur fermento nėra. Pasiūlytas modelis buvo ištirtas vykdant skaitinius eksperimentus, kad būtų nustatytos sąlygos, kuriomis jis gali būti taikomas tiksliam biojutiklio veiksmo modeliavimui. Šio modelio tikslumas buvo vertinamas lyginant juo gaunamus rezultatus su dvimačio modelio rezultatais. Pasiūlyto modelio rezultatai taip pat buvo palyginti su vienmačio modelio, kuriame perforuota membrana pakeičiama vienu homogenišku sluoksniu, rezultatais. Biojutiklis buvo modeliuojamas reakcijos-difuzijos lygtimis su netiesiniu nariu, aprašančiu fermentinės reakcijos Michaelio–Menteno kinetiką. Modelio lygčių sistema buvo sprendžiama skaitiškai, naudojant baigtinių skirtumų metodą.Computer-Aided Modeling of a Biosensor with Selective and Perforated Membranes Using a Four-Layered One-Dimensional ModelKarolis Petrauskas SummaryThis article presents a one-dimensional model for a biosensor with perforated and selective membranes. This model is constructed by replacing the perforated membrane with two homogeneous layers. These layers are used to model parts of the perforated membrane, where holes are fi lled with an enzyme and where is no enzyme in the holes, separately. The proposed model was investigated by performing numerical experiments in order to determine conditions, under which the proposed model can be used to simulate an operation of a biosensor with an outer perforated membrane precisely. A preciseness of the model was measured by comparing its results with results of the corresponding two-dimensional model. Beside the measurement of the preciseness, results of the proposed model were compared to the results of the one-dimensional model, constructed by replacing the perforated membrane with one homogeneous layer. A biosensor was modeled using diffusion-reaction equations with a nonlinear member representing the Michaelis-Menten kinetic of an enzymatic reaction. These equations were solved numerically, using the method of fi nite differences.: 18px;"> 


Author(s):  
Jing-Jing Zhang ◽  
Xiang-Gui Li ◽  
Jing-Fang Shao

A high-order accuracy time discretization method is developed in this paper to solve the one-dimensional nonlinear Dirac (NLD) equation. Based on the implicit integration factor (IIF) method, two schemes are proposed. Central differences are applied to the spatial discretization. The semi-discrete scheme keeps the conservation of the charge and energy. For the temporal discretization, second-order IIF method and fourth-order IIF method are applied respectively to the nonlinear system arising from the spatial discretization. Numerical experiments are given to validate the accuracy of these schemes and to discuss the interaction dynamics of the NLD solitary waves.


Sign in / Sign up

Export Citation Format

Share Document