Effect of temperature on isoprenaline- and barium-induced slow action potentials in guinea-pig ventricular strips

1986 ◽  
Vol 17 (5) ◽  
pp. 559-563 ◽  
Author(s):  
Stefano Manzini ◽  
Massimo Parlani ◽  
Elena Martucci ◽  
Carlo Alberto Maggi ◽  
Alberto Meli
1996 ◽  
Vol 84 (5) ◽  
pp. 1166-1176 ◽  
Author(s):  
Wyun Kon Park ◽  
Joseph J. Pancrazio ◽  
Chang Kook Suh ◽  
Carl III Lynch

Background The effects of anesthetic concentrations of sevoflurane were studied in isolated myocardial tissue to delineate the mechanisms by which cardiac function is altered. Methods Isometric force of isolated guinea pig ventricular papillary muscle was studied at 37 degrees C in normal and 26 mM K+ Tyrode's solution at various stimulation rates. Normal and slow action potentials were evaluated using conventional microelectrodes. Effects of sevoflurane on sarcoplasmic reticulum function in situ were also evaluated by its effect on rapid cooling contractures, which are known to activate Ca2+ release from the sarcoplasmic reticulum, and on concentrations of rat papillary muscle. Finally, Ca2+ and K+ currents of isolated guinea pig ventricular myocytes were examined using the whole-cell patch clamp technique. Results Sevoflurane equivalent to 1.4% and 2.8% depressed guinea pig myocardial contractions to approximately 85 and approximately 65% of control, respectively, although the maximum rate of force development at 2 or 3 Hz and force in rat myocardium after rest showed less depression. In the partially depolarized, beta-adrenergically stimulated myocardium, sevoflurane selectively depressed late peak force without changing early peak force, whereas it virtually abolished rapid cooling contractures. Sevoflurane did not alter the peak amplitude or maximum depolarization rate of normal and slow action potentials, but action potential duration was significantly prolonged. In isolated guinea pig myocytes at room temperature, 0.7 mM sevoflurane (equivalent to 3.4%) depressed peak Ca2+ current by approximately 25% and increased the apparent rate of inactivation. The delayed outward K+ current was markedly depressed, but the inwardly rectifying K+ current was only slightly affected by 0.35 mM sevoflurane. Conclusions These results suggest that the direct myocardial depressant effects of sevoflurane are similar to those previously described for isoflurane. The rapid initial release of Ca2+ from the sarcoplasmic reticulum is not markedly decreased, although certain release pathway, specifically those induced by rapid cooling, appear to be depressed. Contractile depression may be partly related to the depression of Ca2+ influx through the cardiac membrane. The major electrophysiologic effect of sevoflurane seems to be a depression of the delayed outward K+ current, which appears to underlie the increased action potential duration.


1988 ◽  
Vol 66 (8) ◽  
pp. 1092-1095 ◽  
Author(s):  
Jayanti Thakkar ◽  
Shu-Ben Tang ◽  
Nicholas Sperelakis ◽  
Gordon M. Wahler

Cyclic GMP inhibits the slow inward Ca current of cardiac cells. This effect could be due to a cyclic GMP-mediated phosphorylation of the Ca channel (or some protein modifying Ca channel activity), or alternatively, to enhanced degradation of cyclic AMP owing to stimulation of a phosphodiesterase by cyclic GMP. To test the latter possibility, we examined the effect of extracellular 8-bromo-cyclic GMP on cyclic AMP levels in guinea pig papillary muscles, in parallel with electrophysiological experiments. Isoproterenol (10−6 M) significantly increased the cyclic AMP levels and induced Ca-dependent slow action potentials. Superfusion with 8-bromo-cyclic GMP (10−3 M) inhibited the slow action potentials induced by isoproterenol. However, muscles superfused with 8-bromo-cyclic GMP had cyclic AMP levels identical to those of muscles superfused with isoproterenol alone. Similarly, 8-bromo-cyclic GMP had no effect on the increase in cyclic AMP levels of muscles treated with forskolin (10−6 M) or histamine (10−6 M). We conclude that the inhibitory effect of cyclic GMP on slow Ca channels in guinea pig ventricular cells is not due to a decrease in the cyclic AMP levels. We hypothesize that a cyclic GMP-mediated phosphorylation is the most likely explanation for the Ca channel inhibition observed in this preparation.


1965 ◽  
Vol 48 (5) ◽  
pp. 797-823 ◽  
Author(s):  
L. Barr ◽  
M. M. Dewey ◽  
W. Berger

The hypothesis that the nexus is a specialized structure allowing current flow between cell interiors is corroborated by concomitant structural changes of the nexus and changes of electrical coupling between cells due to soaking in solutions of abnormal tonicity. Fusiform frog atrial fibers are interconnected by nexuses. The nexuses, desmosomes, and regions of myofibrillar attachment of this muscle are not associated in a manner similar to intercalated discs of guinea pig cardiac muscle. Indeed, nexuses occur wherever cell membranes are closely apposed. Action potentials of frog atrial bundles detected extracellularly across a sucrose gap change from monophasic to diphasic when the gap is shunted by a resistor. This indicates that action potentials are transmitted across the gap when sufficient excitatory current is allowed to flow across the gap. When the sucrose solution in the gap is made hypertonic, propagation past the gap is blocked and the resistance between the cells in the gap increases. Electron micrographs demonstrate that the nexuses of frog atrium and guinea pig ventricle are ruptured by hypertonic solutions.


Sign in / Sign up

Export Citation Format

Share Document