Calcitonin gene-related peptide in the rat kidney: Occurrence, sensitivity to capsaicin, and stimulation of adenylate cyclase

Neuroscience ◽  
1989 ◽  
Vol 30 (2) ◽  
pp. 503-513 ◽  
Author(s):  
P. Geppetti ◽  
E. Baldi ◽  
A. Castellucci ◽  
E. Del Bianco ◽  
P. Santicioli ◽  
...  
1989 ◽  
Vol 256 (2) ◽  
pp. E331-E335 ◽  
Author(s):  
T. Chiba ◽  
A. Yamaguchi ◽  
T. Yamatani ◽  
A. Nakamura ◽  
T. Morishita ◽  
...  

From this study, we predicted that the human calcitonin gene-related peptide (hCGRP) fragment hCGRP-(8-37) would be a selective antagonist for CGRP receptors but an agonist for calcitonin (CT) receptors. In rat liver plasma membrane, where CGRP receptors predominate and CT appears to act through these receptors, hCGRP-(8-37) dose dependently displaced 125I-[Tyr0]rat CGRP binding. However, hCGRP-(8-37) had no effect on adenylate cyclase activity in liver plasma membrane. Furthermore, hCGRP-(8-37) inhibited adenylate cyclase activation induced not only by hCGRP but also by hCT. On the other hand, in LLC-PK1 cells, where calcitonin receptors are abundant and CGRP appears to act via these receptors, the bindings of 125I-[Tyr0]rat CGRP and 125I-hCT were both inhibited by hCGRP-(8-37). In contrast to liver membranes, interaction of hCGRP-(8-37) with these receptors led to stimulation of adenosine 3',5'-cyclic monophosphate (cAMP) production in LLC-PK1 cells, and moreover, this fragment did not inhibit the increased production of cAMP induced not only by hCT but also by hCGRP. Thus hCGRP-(8-37) appears to be a useful tool for determining whether the action of CGRP as well as that of CT is mediated via specific CGRP receptors or CT receptors.


1998 ◽  
Vol 274 (6) ◽  
pp. F1078-F1085 ◽  
Author(s):  
Martina Reslerova ◽  
Rodger Loutzenhiser

Calcitonin gene-related peptide (CGRP) is a potent vasodilator that is suggested to act via ATP-sensitive K channels (KATP). In the present study, we examined the actions of CGRP on pressure- and angiotensin II-induced vasoconstriction, using the in vitro perfused hydronephrotic rat kidney. Elevated pressure (from 80 to 180 mmHg) and 0.1 nM angiotensin II elicited similar decreases in afferent diameter in this model. CGRP inhibited myogenic reactivity in a concentration-dependent manner, completely preventing pressure-induced constriction at 10 nM (95 ± 10% inhibition). These effects were partially attenuated by 10 μM glibenclamide (62 ± 16% inhibition, P = 0.025), indicating both KATP-dependent and -independent actions of CGRP. In contrast, 10 nM CGRP inhibited angiotensin II-induced vasoconstriction by only 54 ± 11%, and this action was not affected by glibenclamide (41 ± 11%, P = 0.31). CGRP also inhibited the efferent arteriolar response to angiotensin II in the absence and presence of glibenclamide. Pinacidil (1.0 μM), a KATP opener also preferentially inhibited pressure- vs. angiotensin II-induced vasoconstriction (97 ± 5 and 59 ± 13% inhibition, respectively; P = 0.034). We conclude that the renal vasodilatory mechanisms of CGRP are pleiotropic and involve both KATP-dependent and -independent pathways. The effectiveness of CGRP in opposing renal vasoconstriction and the role of KATP in this action appear to depend on the nature the underlying vasoconstriction. We suggest that this phenomenon reflects an inhibition of KATP activation by angiotensin II.


1990 ◽  
Vol 259 (6) ◽  
pp. G934-G939 ◽  
Author(s):  
M. W. Mulholland ◽  
S. Jaffer

The effects of calcitonin gene-related peptide (CGRP) on acetylcholine (ACh) release from myenteric plexus neurons in primary culture were investigated. CGRP (10(-12) to 10(-6) M) produced a dose-dependent increase in [3H]ACh release. The ACh release caused by CGRP was significantly inhibited (74 +/- 24%) by preincubation with dideoxyadenosine but was increased more than threefold by preincubation with theophylline. Incubation of myenteric plexus neurons with CGRP (10(-8) M) in the presence of diltiazem (10(-5) M) or in a calcium-free medium markedly reduced [3H]ACh release. CGRP potentiated [3H]ACh release stimulated by potassium or substance P but not by cholecystokinin octapeptide or forskolin. The results demonstrate that CGRP cause release of ACh from guinea pig myenteric plexus neurons and suggest that the peptide acts through an adenosine 3',5'-cyclic monophosphate-dependent mechanism that involves neuronal calcium channels.


1997 ◽  
Vol 272 (3) ◽  
pp. F410-F415 ◽  
Author(s):  
P. Blakely ◽  
D. A. Vaughn ◽  
D. D. Fanestil

We previously reported that salmon calcitonin, but not rat calcitonin, increased renal thiazide receptor (TZR) density and decreased renal calcium [urinary calcium excretion (U(Caex))] in the rat. Since calcitonins, islet amyloid polypeptide (amylin), calcitonin-gene related peptide (CGRP), and adrenomedullin interact with a family of calcitonin-related receptors, we examined the effects of these peptides on 1) TZR density, as quantitated by binding of [3H]metolazone to renal membranes; 2) plasma ionic composition; and 3) urinary electrolyte excretion. Subcutaneous amylin both increased TZR density nearly twofold and decreased U(Caex), with maximal effects by 24 h. The decreased U(Caex) occurred with plasma amylin levels in the physiological range, whereas the increased TZR did not reach maximum even with plasma amylin >100 times above normal. Similar doses of adrenomedullin increased TZR density modestly but without effect on U(Caex), whereas CGRP did not alter TZR density and tended to increase U(Caex). We propose that U(Caex) and TZR density in the rat kidney are regulated by rat amylin but not by rat calcitonin.


Cephalalgia ◽  
1993 ◽  
Vol 13 (3) ◽  
pp. 180-183 ◽  
Author(s):  
Richard D Piper ◽  
Lars Edvinsson ◽  
Rolf Ekman ◽  
Geoffrey A Lambert

There is circumstantial evidence that cortical spreading depression (SD) may account for the scotoma and the “spreading cortical oligemia” seen during migraine with aura. It has been shown that calcitonin gene-related peptide (CGRP) is increased in blood taken from the external jugular vein (EJV) in humans during migraine and after stimulation of the trigeminal ganglion. To test the hypothesis that cortical SD may elevate the concentration of this vasoactive peptide in the EJV during migraine, we have measured its concentration in the external jugular vein of cats during cortical SD. This study demonstrates that SD has no effect on the concentration of CGRP either during the passage of a wave of spreading depression across the cortex or, 60 min later, during the period of post-SD cortical oligemia.


1996 ◽  
Vol 318 (1) ◽  
pp. 241-245 ◽  
Author(s):  
Hedley A COPPOCK ◽  
Ali A OWJI ◽  
Stephen R BLOOM ◽  
David M SMITH

We have previously demonstrated specific binding sites for adrenomedullin, a novel member of the calcitonin family of peptides, in rat muscles. It is unclear whether these receptors are vascular or muscular. Receptors for the structurally similar calcitonin gene-related peptide (CGRP) are present on myocytes and might be involved in the regulation of myocyte glucose metabolism and control by motor neurons. We investigated whether adrenomedullin binding sites were present on L6 myocytes. Specific [125I]adrenomedullin binding sites were demonstrated where adrenomedullin competed with an IC50 of 0.22±0.04 nM (mean±S.E.M.) and a concentration of binding sites (Bmax) of 0.95±0.19 pmol/mg of protein (mean±S.E.M.). CGRP and the specific CGRP receptor antagonist CGRP(8–37) competed weakly at this site (IC50 > 10 and 601±298 nM respectively). Binding studies with [125I]CGRP revealed a binding site for CGRP (IC50 = 0.13±0.01 nM; Bmax = 0.83±0.10 pmol/mg of protein) where both CGRP(8–37) and adrenomedullin competed with [125I]CGRP with IC50 values of 1.15±0.12 and 8.68±0.98 nM respectively. Chemical cross-linking showed the CGRP and adrenomedullin binding site–ligand complexes to have approximate molecular masses of 82 and 76 kDa respectively. Both CGRP and adrenomedullin increased adenylate cyclase activity with similar potencies. In both cases adenylate cyclase activation was blocked by CGRP(8–37). Stimulation with 10 nM adrenomedullin or CGRP caused an increase in the percentage of total activated cellular cAMP-dependent protein kinase from 38% in resting cells to 100% and 98% respectively. Therefore in L6 cells adrenomedullin can bind to CGRP receptors, activating adenylate cyclase and cAMP-dependent protein kinase.


Sign in / Sign up

Export Citation Format

Share Document