Trajectories of renormalization group flows on the phase diagram of N = 2 superconformal field theories

1990 ◽  
Vol 237 (3-4) ◽  
pp. 397-400 ◽  
Author(s):  
Kei Ito
1998 ◽  
Vol 50 (4) ◽  
pp. 756-793 ◽  
Author(s):  
D. Brydges ◽  
J. Dimock ◽  
T. R. Hurd

AbstractWe consider a specific realization of the renormalization group (RG) transformation acting on functional measures for scalar quantum fields which are expressible as a polymer expansion times an ultra-violet cutoff Gaussian measure. The new and improved definitions and estimates we present are sufficiently general and powerful to allow iteration of the transformation, hence the analysis of complete renormalization group flows, and hence the construction of a variety of scalar quantum field theories.


1990 ◽  
Vol 346 (2-3) ◽  
pp. 264-292 ◽  
Author(s):  
M.T. Grisaru ◽  
A. Lerda ◽  
S. Penati ◽  
D. Zanon

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Fabian Klos ◽  
Daniel Roggenkamp

Abstract As put forward in [1] topological quantum field theories can be projected using so-called projection defects. The projected theory and its correlation functions can be completely realized within the unprojected one. An interesting example is the case of topological quantum field theories associated to IR fixed points of renormalization group flows, which by this method can be realized inside the theories associated to the UV. In this note we show that projection defects in triangulated defect categories (such as defects in 2d topologically twisted $$ \mathcal{N} $$ N = (2, 2) theories) always come with complementary projection defects, and that the unprojected theory decomposes into the theories associated to the two projection defects. We demonstrate this in the context of Landau-Ginzburg orbifold theories.


1987 ◽  
Vol 195 (2) ◽  
pp. 202-208 ◽  
Author(s):  
Francesco Ravanini ◽  
Sung-Kil Yang

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Cyril Closset ◽  
Simone Giacomelli ◽  
Sakura Schäfer-Nameki ◽  
Yi-Nan Wang

Abstract Canonical threefold singularities in M-theory and Type IIB string theory give rise to superconformal field theories (SCFTs) in 5d and 4d, respectively. In this paper, we study canonical hypersurface singularities whose resolutions contain residual terminal singularities and/or 3-cycles. We focus on a certain class of ‘trinion’ singularities which exhibit these properties. In Type IIB, they give rise to 4d $$ \mathcal{N} $$ N = 2 SCFTs that we call $$ {D}_p^b $$ D p b (G)-trinions, which are marginal gaugings of three SCFTs with G flavor symmetry. In order to understand the 5d physics of these trinion singularities in M-theory, we reduce these 4d and 5d SCFTs to 3d $$ \mathcal{N} $$ N = 4 theories, thus determining the electric and magnetic quivers (or, more generally, quiverines). In M-theory, residual terminal singularities give rise to free sectors of massless hypermultiplets, which often are discretely gauged. These free sectors appear as ‘ugly’ components of the magnetic quiver of the 5d SCFT. The 3-cycles in the crepant resolution also give rise to free hypermultiplets, but their physics is more subtle, and their presence renders the magnetic quiver ‘bad’. We propose a way to redeem the badness of these quivers using a class $$ \mathcal{S} $$ S realization. We also discover new S-dualities between different $$ {D}_p^b $$ D p b (G)-trinions. For instance, a certain E8 gauging of the E8 Minahan-Nemeschansky theory is S-dual to an E8-shaped Lagrangian quiver SCFT.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Martin Fluder ◽  
Christoph F. Uhlemann

Abstract Renormalization group flows are studied between 5d SCFTs engineered by (p, q) 5-brane webs with large numbers of external 5-branes. A general expression for the free energy on S5 in terms of single-valued trilogarithm functions is derived from their supergravity duals, which are characterized by the 5-brane charges and additional geometric parameters. The additional geometric parameters are fixed by regularity conditions, and we show that the solutions to the regularity conditions extremize a trial free energy. These results are used to survey a large sample of $$ \mathcal{O} $$ O (105) renormalization group flows between different 5d SCFTs, including Higgs branch flows and flows that preserve the SU(2) R- symmetry. In all cases the free energy changes monotonically towards the infrared, in line with a 5d F -theorem.


Sign in / Sign up

Export Citation Format

Share Document