Renormalization group flows in generalized Toda field theories

1991 ◽  
Vol 348 (1) ◽  
pp. 148-177 ◽  
Author(s):  
M.T. Grisaru ◽  
S. Penati
1998 ◽  
Vol 50 (4) ◽  
pp. 756-793 ◽  
Author(s):  
D. Brydges ◽  
J. Dimock ◽  
T. R. Hurd

AbstractWe consider a specific realization of the renormalization group (RG) transformation acting on functional measures for scalar quantum fields which are expressible as a polymer expansion times an ultra-violet cutoff Gaussian measure. The new and improved definitions and estimates we present are sufficiently general and powerful to allow iteration of the transformation, hence the analysis of complete renormalization group flows, and hence the construction of a variety of scalar quantum field theories.


1990 ◽  
Vol 346 (2-3) ◽  
pp. 264-292 ◽  
Author(s):  
M.T. Grisaru ◽  
A. Lerda ◽  
S. Penati ◽  
D. Zanon

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Fabian Klos ◽  
Daniel Roggenkamp

Abstract As put forward in [1] topological quantum field theories can be projected using so-called projection defects. The projected theory and its correlation functions can be completely realized within the unprojected one. An interesting example is the case of topological quantum field theories associated to IR fixed points of renormalization group flows, which by this method can be realized inside the theories associated to the UV. In this note we show that projection defects in triangulated defect categories (such as defects in 2d topologically twisted $$ \mathcal{N} $$ N = (2, 2) theories) always come with complementary projection defects, and that the unprojected theory decomposes into the theories associated to the two projection defects. We demonstrate this in the context of Landau-Ginzburg orbifold theories.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Martin Fluder ◽  
Christoph F. Uhlemann

Abstract Renormalization group flows are studied between 5d SCFTs engineered by (p, q) 5-brane webs with large numbers of external 5-branes. A general expression for the free energy on S5 in terms of single-valued trilogarithm functions is derived from their supergravity duals, which are characterized by the 5-brane charges and additional geometric parameters. The additional geometric parameters are fixed by regularity conditions, and we show that the solutions to the regularity conditions extremize a trial free energy. These results are used to survey a large sample of $$ \mathcal{O} $$ O (105) renormalization group flows between different 5d SCFTs, including Higgs branch flows and flows that preserve the SU(2) R- symmetry. In all cases the free energy changes monotonically towards the infrared, in line with a 5d F -theorem.


1999 ◽  
Vol 14 (14) ◽  
pp. 2257-2271 ◽  
Author(s):  
KASPER OLSEN ◽  
RICARDO SCHIAPPA

We consider target space duality transformations for heterotic sigma models and strings away from renormalization group fixed points. By imposing certain consistency requirements between the T-duality symmetry and renormalization group flows, the one-loop gauge beta function is uniquely determined, without any diagram calculations. Classical T-duality symmetry is a valid quantum symmetry of the heterotic sigma model, severely constraining its renormalization flows at this one-loop order. The issue of heterotic anomalies and their cancellation is addressed from this duality constraining viewpoint.


Sign in / Sign up

Export Citation Format

Share Document