Description of nuclear collective motions in terms of the boson expansion technique

1976 ◽  
Vol 270 (2) ◽  
pp. 317-380 ◽  
Author(s):  
T. Kishimoto ◽  
T. Tamura
1989 ◽  
Vol 67 (2-3) ◽  
pp. 131-134 ◽  
Author(s):  
A. K. Varshney ◽  
K. K. Gupta ◽  
D. K. Gupta ◽  
R. K. Tyagi

Recently, attempts have been made to use the dynamic pairing plus quadrupole model to evaluate B(E2) values, B(E2) branching ratios, and low-lying energy levels for 146,148Sm nuclei, which are in poor agreement with experiment. Application of the boson expansion technique on 148Sm shows too much splitting and an incorrect order for the quintet states, while other properties have not been discussed. In the present work, 146,148Sm nuclei have been described using an asymmetric rotor model framework. The nonaxiality parameter (γ) has been evaluated using the energy ratio E2+′/E6+. Remarkable success has been achieved in explaining the correct ordering of known low-lying energy levels, B(E2) values, and B(E2) branching ratios, which indicate that the so-called spherical nuclei may be treated as triaxial.


1980 ◽  
Vol 347 (1-2) ◽  
pp. 359-387 ◽  
Author(s):  
T. Tamura ◽  
K.J. Weeks ◽  
T. Kishimoto

Impact ◽  
2019 ◽  
Vol 2019 (10) ◽  
pp. 84-86
Author(s):  
Keisuke Fujii

The coordination and movement of people in large crowds, during sports games or when socialising, seems readily explicable. Sometimes this occurs according to specific rules or instructions such as in a sport or game, at other times the motivations for movement may be more focused around an individual's needs or fears. Over the last decade, the computational ability to identify and track a given individual in video footage has increased. The conventional methods of how data is gathered and interpreted in biology rely on fitting statistical results to particular models or hypotheses. However, data from tracking movements in social groups or team sports are so complex as they cannot easily analyse the vast amounts of information and highly varied patterns. The author is an expert in human behaviour and machine learning who is based at the Graduate School of Informatics at Nagoya University. His challenge is to bridge the gap between rule-based theoretical modelling and data-driven modelling. He is employing machine learning techniques to attempt to solve this problem, as a visiting scientist in RIKEN Center for Advanced Intelligence Project.


2021 ◽  
Vol 11 (10) ◽  
pp. 4508
Author(s):  
Pavel Šofer ◽  
Michal Šofer ◽  
Marek Raček ◽  
Dawid Cekus ◽  
Paweł Kwiatoń

The scattering phenomena of the fundamental antisymmetric Lamb wave mode with a horizontal notch enabling the partial energy transfer (PET) option is addressed in this paper. The PET functionality for a given waveguide is realized using the material interface. The energy scattering coefficients are identified using two methods, namely, a hybrid approach, which utilizes the finite element method (FEM) and the general orthogonality relation, and the semi-analytical approach, which combines the modal expansion technique with the orthogonal property of Lamb waves. Using the stress and displacement continuity conditions on the present (sub)waveguide interfaces, one can explicitly derive the global scattering matrix, which allows detailed analysis of the scattering process across the considered interfaces. Both methods are then adopted on a simple representation of a surface breaking crack in the form of a vertical notch, of which a certain section enables not only the reflection of the incident energy, but also its nonzero transfer. The presented results show very good conformity between both utilized approaches, thus leading to further development of an alternative technique.


Author(s):  
Federico DI Rocco ◽  
Maria Licci ◽  
Agnes Paasche ◽  
Alexandru Szathmari ◽  
Pierre Aurélien Beuriat ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document