tracking movements
Recently Published Documents


TOTAL DOCUMENTS

108
(FIVE YEARS 13)

H-INDEX

26
(FIVE YEARS 2)

PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251371
Author(s):  
Woong Choi ◽  
Naoki Yanagihara ◽  
Liang Li ◽  
Jaehyo Kim ◽  
Jongho Lee

The analysis of visually guided tracking movements is important to the understanding of imitation exercises and movements carried out using the human visuomotor control system. In this study, we analyzed the characteristics of visuomotor control in the intermittent performance of circular tracking movements by applying a system that can differentiate between the conditions of invisible and visible orbits and visible and invisible target phases implemented in a 3D VR space. By applying visuomotor control based on velocity control, our study participants were able to track objects with visible orbits with a precision of approximately 1.25 times greater than they could track objects with invisible orbits. We confirmed that position information is an important parameter related to intermittent motion at low speeds (below 0.5 Hz) and that tracked target velocity information could be obtained more precisely than position information at speeds above 0.5 Hz. Our results revealed that the feedforward (FF) control corresponding to velocity was delayed under the visible-orbit condition at speeds over 0.5 Hz, suggesting that, in carrying out imitation exercises and movements, the use of visually presented 3D guides can interfere with exercise learning and, therefore, that the effects of their use should be carefully considered.


Author(s):  
KRN Florko ◽  
ER Davidson ◽  
KJ Lees ◽  
L Hammer ◽  
MF Lavoie ◽  
...  

2020 ◽  
Vol 44 (4) ◽  
pp. 203-217
Author(s):  
I. G. Shevtsova ◽  
A. A. Navolotskii ◽  
N. A. Eremich ◽  
M. P. Shestakov

Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3477
Author(s):  
Wookhyun Park ◽  
Woong Choi ◽  
Hanjin Jo ◽  
Geonhui Lee ◽  
Jaehyo Kim

Human movement is a controlled result of the sensory-motor system, and the motor control mechanism has been studied through diverse movements. The present study examined control characteristics of dominant and non-dominant hands by analyzing the transient responses of circular tracking movements in 3D virtual reality space. A visual target rotated in a circular trajectory at four different speeds, and 29 participants tracked the target with their hands. The position of each subject’s hand was measured, and the following three parameters were investigated: normalized initial peak velocity (IPV2), initial peak time (IPT2), and time delay (TD2). The IPV2 of both hands decreased as target speed increased. The results of IPT2 revealed that the dominant hand reached its peak velocity 0.0423 s earlier than the non-dominant hand, regardless of target speed. The TD2 of the hands diminished by 0.0218 s on average as target speed increased, but the dominant hand statistically revealed a 0.0417-s shorter TD2 than the non-dominant hand. Velocity-control performances from the IPV2 and IPT2 suggested that an identical internal model controls movement in both hands, whereas the dominant hand is likely more experienced than the non-dominant hand in reacting to neural commands, resulting in better reactivity in the movement task.


2020 ◽  
Vol 60 (4) ◽  
pp. 886-895 ◽  
Author(s):  
Simon Poppinga ◽  
David Correa ◽  
Bernd Bruchmann ◽  
Achim Menges ◽  
Thomas Speck

Synopsis Plant movements are of increasing interest for biomimetic approaches where hinge-free compliant mechanisms (flexible structures) for applications, for example, in architecture, soft robotics, and medicine are developed. In this article, we first concisely summarize the knowledge on plant movement principles and show how the different modes of actuation, that is, the driving forces of motion, can be used in biomimetic approaches for the development of motile technical systems. We then emphasize on current developments and breakthroughs in the field, that is, the technical implementation of plant movement principles through additive manufacturing, the development of structures capable of tracking movements (tropisms), and the development of structures that can perform multiple movement steps. Regarding the additive manufacturing section, we present original results on the successful transfer of several plant movement principles into 3D printed hygroscopic shape-changing structures (“4D printing”). The resulting systems include edge growth-driven actuation (as known from the petals of the lily flower), bending scale-like structures with functional bilayer setups (inspired from pinecones), modular aperture architectures (as can be similarly seen in moss peristomes), snap-through elastic instability actuation (as known from Venus flytrap snap-traps), and origami-like curved-folding kinematic amplification (inspired by the carnivorous waterwheel plant). Our novel biomimetic compliant mechanisms highlight the feasibility of modern printing techniques for designing and developing versatile tailored motion responses for technical applications. We then focus on persisting challenges in the field, that is, how to speed-boost intrinsically slow hydraulically actuated structures and how to achieve functional resilience and robustness, before we propose the establishment of a motion design catalog in the conclusion.


2020 ◽  
Vol 10 (2) ◽  
pp. 621 ◽  
Author(s):  
Woong Choi ◽  
Jongho Lee ◽  
Liang Li

Motor control characteristics of the human visuomotor control system need to be analyzed in the three-dimensional (3D) space to study and imitate human movements. In this paper, we examined circular tracking movements on two planes in 3D space from a motor control perspective based on three temporospatial parameters in polar coordinates. Sixteen healthy human subjects participated in this study and performed circular target tracking movements rotating at 0.125, 0.25, 0.5, and 0.75 Hz in the frontal or sagittal planes in three-dimensional space. The results showed that two temporal parameter errors on each plane were proportional to the change in the target velocity. Furthermore, frontal plane circular tracking errors without depth for a spatial parameter were lower than those for sagittal plane circular tracking with depth. The experimental protocol and data analysis allowed us to analyze the motor control characteristics temporospatially for circular tracking movement with various depths and speeds in the 3D VR space.


Impact ◽  
2019 ◽  
Vol 2019 (10) ◽  
pp. 84-86
Author(s):  
Keisuke Fujii

The coordination and movement of people in large crowds, during sports games or when socialising, seems readily explicable. Sometimes this occurs according to specific rules or instructions such as in a sport or game, at other times the motivations for movement may be more focused around an individual's needs or fears. Over the last decade, the computational ability to identify and track a given individual in video footage has increased. The conventional methods of how data is gathered and interpreted in biology rely on fitting statistical results to particular models or hypotheses. However, data from tracking movements in social groups or team sports are so complex as they cannot easily analyse the vast amounts of information and highly varied patterns. The author is an expert in human behaviour and machine learning who is based at the Graduate School of Informatics at Nagoya University. His challenge is to bridge the gap between rule-based theoretical modelling and data-driven modelling. He is employing machine learning techniques to attempt to solve this problem, as a visiting scientist in RIKEN Center for Advanced Intelligence Project.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Woong Choi ◽  
Liang Li ◽  
Jongho Lee

Analysis of visually guided tracking movements is an important component of understanding human visuomotor control system. The aim of our study was to investigate the effects of different target speeds and different circular tracking planes, which provide different visual feedback of depth information, on temporal and spatial tracking accuracy. In this study, we analyze motor control characteristic of circular tracking movements during monocular vision in three-dimensional space using a virtual reality system. Three parameters in polar coordinates were analyzed: ΔR, the difference in the distance from the fixed pole; Δθ, the difference in the position angle; and Δω, the difference in the angular velocity. We compare the accuracy of visually guided circular tracking movements during monocular vision in two conditions: (1) movement in the frontal plane relative to the subject that requires less depth information and (2) movement in the sagittal plane relative to the subject that requires more depth information. We also examine differences in motor control at four different target speeds. The results show that depth information affects both spatial and temporal accuracy of circular tracking movement, whereas target speed only affects temporal accuracy of circular tracking movement. This suggests that different strategies of feedforward and feedback controls are performed in the tracking of movements.


Sign in / Sign up

Export Citation Format

Share Document