Effect of impurities on the one-dimensional quantum sine-Gordon system (g2 = 4π). Self-consistent t-matrix approximation

1993 ◽  
Vol 177 (1) ◽  
pp. 76-80 ◽  
Author(s):  
Hikaru Yamamoto
2014 ◽  
Vol 215 ◽  
pp. 385-388
Author(s):  
Valter A. Ignatchenko ◽  
Denis S. Tsikalov

Effects of both the phase and the amplitude inhomogeneities of different dimensionalities on the Greens function and on the one-dimensional density of states of spin waves in the sinusoidal superlattice have been studied. Processes of multiple scattering of waves from inhomogeneities have been taken into account in the self-consistent approximation.


2018 ◽  
Vol 32 (21) ◽  
pp. 1850249 ◽  
Author(s):  
Xiao-Xia Ruan ◽  
Hao Gong ◽  
Zheng-Ling Wang ◽  
Hong-Shi Zong

We compute the momentum distribution of a homogeneous Fermi gas at unitarity in the normal phase within the framework of the non-self-consistent T-matrix approximation with particle-hole fluctuation. From the large-momentum behavior of momentum distribution, we obtain the contact for the unitary Fermi gas. We also compare our results with experimental data and other theoretical predictions.


2017 ◽  
Vol 27 (11) ◽  
pp. 2111-2145 ◽  
Author(s):  
Yeping Li ◽  
Peicheng Zhu

We shall investigate the asymptotic stability, toward a nonlinear wave, of the solution to an outflow problem for the one-dimensional compressible Navier–Stokes–Poisson equations. First, we construct this nonlinear wave which, under suitable assumptions, is the superposition of a stationary solution and a rarefaction wave. Then it is shown that the nonlinear wave is asymptotically stable in the case that the initial data are a suitably small perturbation of the nonlinear wave. The main ingredient of the proof is the [Formula: see text]-energy method that takes into account both the effect of the self-consistent electrostatic potential and the spatial decay of the stationary part of the nonlinear wave.


2015 ◽  
Vol 29 (32) ◽  
pp. 1550207 ◽  
Author(s):  
Hao Gong ◽  
Xiao-Xia Ruan ◽  
Hou-Rong Pang ◽  
Hong-Shi Zong

In this paper, taking into account the effect of the induced interaction, we calculate the energy of ultracold Fermi gases at unitarity in the framework of non-self-consistent T-matrix approximation (nTMA) above the critical temperature and compare the result with the experimental data and other theoretical calculation without induced interaction. Our calculated chemical potential is higher than the experimental data, but our calculated energy obtains a good agreement with Tokyo experiment for temperature range between [Formula: see text] and [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document