The origin of geochemical variations in a late permian volcanic arc, eastern klamath mountains, California

1991 ◽  
Vol 46 (3-4) ◽  
pp. 299-322 ◽  
Author(s):  
Chantal Alibert ◽  
Philippe Martin ◽  
Henriette Lapierre
1981 ◽  
Vol 44 (3) ◽  
pp. 377-391 ◽  
Author(s):  
F. Innocenti ◽  
P. Manetti ◽  
A. Peccerillo ◽  
G. Poli

2019 ◽  
Author(s):  
Maxim V. Portnyagin ◽  
Vera V. Ponomareva ◽  
Egor A. Zelenin ◽  
Lilia I. Bazanova ◽  
Maria M. Pevzner ◽  
...  

Abstract. Tephra layers produced by volcanic eruptions are widely used for correlation and dating of various deposits and landforms, for synchronization of disparate paleoenvironmental archives, and for reconstruction of magma origin. Here we present our original database TephraKam, which includes chemical compositions of volcanic glass in tephra and welded tuffs from the Kamchatka volcanic arc. The database contains 7049 major element analyses obtained by electron microprobe and 738 trace element analyses obtained by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) on 487 samples collected in proximity of their volcanic sources in all volcanic zones in Kamchatka. The samples characterize about 300 explosive eruptions, which occurred in Kamchatka from the Pliocene until historic times. Precise or estimated ages for all samples are based on published 39Ar/40Ar dates of rocks and 14C dates of host sediments, statistical age modelling and geologic relationships with dated units. All data in TephraKam is supported by information about source volcanoes and analytical details. Using the data, we present an overview of geochemical variations of Kamchatka volcanic glasses and discuss application of this data for precise identification of tephra layers, their source volcanoes, temporal and spatial geochemical variations of pyroclastic rocks in Kamchatka. The data files described in this paper are available on ResearchGate at https://doi.org/10.13140/RG.2.2.23627.13606 (Portnyagin et al., 2019).


1989 ◽  
Vol 26 (4) ◽  
pp. 716-736 ◽  
Author(s):  
D. C. Peck ◽  
T. E. Smith

The geology of the Cartwright Lake area consists of a >2 km thick conformable sequence of Early Proterozoic supracrustal rocks intruded by calc-alkaline granitoid plutons. The supracrustal succession comprises a basal series of tholeiitic basalts, an overlying bimodal sequence, and an uppermost series of calc-alkaline andesites. The bimodal sequence incorporates abundant tholeiitic basalts and associated mafic tuffs, lesser felsic hyaloclastites and pyroclastics, and minor interflow greywacke–mudstone turbidites.Petrogenetic models involving trace-element concentrations indicate that most of the extrusive and intrusive rocks were derived from similar parent magmas that formed by extensive partial melting of a garnet lherzolite upper-mantle source. The parent liquids fractionated along an early tholeiitic trend and a later calc-alkaline trend, producing the observed geochemical variations in the mafic and intermediate volcanic assemblages. Ponding of mafic magma at the base of the crust may have promoted crustal fusion, thereby generating felsic liquids, which erupted and formed the dacite–rhyolite suite.The geology and geochemistry of the volcanic assemblages are consistent with a subduction-related origin in a volcanic-arc setting. The majority of geochemical evidence favours the interpretation that the Cartwright Lake segment of the arc developed on relatively thin sialic crust.


2020 ◽  
Vol 12 (1) ◽  
pp. 469-486 ◽  
Author(s):  
Maxim V. Portnyagin ◽  
Vera V. Ponomareva ◽  
Egor A. Zelenin ◽  
Lilia I. Bazanova ◽  
Maria M. Pevzner ◽  
...  

Abstract. Tephra layers produced by volcanic eruptions are widely used for correlation and dating of various deposits and landforms, for synchronization of disparate paleoenvironmental archives, and for reconstruction of magma origin. Here we present our original database TephraKam, which includes chemical compositions of volcanic glass in tephra and welded tuffs from the Kamchatka volcanic arc. The database contains 7049 single-shard major element analyses obtained by electron microprobe and 738 trace element analyses obtained by laser ablation inductively coupled plasma mass spectrometry on 487 samples collected in close proximity to their volcanic sources in all volcanic zones in Kamchatka. The samples characterize about 300 explosive eruptions, which occurred in Kamchatka from the Miocene up to recent times. Precise or estimated ages for all samples are based on published 39Ar∕40Ar dates of rocks and 14C dates of host sediments, statistical age modeling and geologic relationships with dated units. All data in TephraKam are supported by information about source volcanoes and analytical details. Using the data, we present an overview of geochemical variations in Kamchatka volcanic glasses and discuss applications of these data for precise identification of tephra layers, their source volcanoes, and temporal and spatial geochemical variations in pyroclastic rocks in Kamchatka. The data files described in this paper are available on ResearchGate at https://doi.org/10.13140/RG.2.2.23627.13606 (Portnyagin et al., 2019).


Sign in / Sign up

Export Citation Format

Share Document