mafic magma
Recently Published Documents


TOTAL DOCUMENTS

172
(FIVE YEARS 57)

H-INDEX

29
(FIVE YEARS 5)

2021 ◽  
Vol 9 ◽  
Author(s):  
Fukashi Maeno ◽  
Atsushi Yasuda ◽  
Natsumi Hokanishi ◽  
Takayuki Kaneko ◽  
Yoshihiko Tamura ◽  
...  

The island-forming Nishinoshima eruptions in the Ogasawara Islands, Japan, provide a rare opportunity to examine how the terrestrial part of Earth’s surface increases via volcanism. Here, the sequence of recent eruptive activity of Nishinoshima is described based on long-term geological and geochemical monitoring of eruptive products. Processes of island growth and temporal changes in the magma chemistry are discussed. The growth of Nishinoshima was sustained by the effusion of low-viscosity andesite lava flows since 2013. The lava flows spread radially with numerous branches, resulting in compound lava flows. Lava flows form the coherent base of the new volcanic edifice; however, pyroclastic eruptions further developed the subaerial volcanic edifice. The duration of three consecutive eruptive episodes decreased from 2 years to a week through the entire eruptive sequence, with a decreasing eruptive volume and discharge rate through time. However, the latest, fourth episode was the most intense and largest, with a magma discharge rate on the order of 106 m3/day. The temporal change in the chemical composition of the magma indicates that more mafic magma was involved in the later episodes. The initial andesite magma with ∼60 wt% SiO2 changed to basaltic andesite magma with ∼55 wt% SiO2, including olivine phenocryst, during the last episode. The eruptive behavior and geochemical characteristics suggest that the 2013–2020 Nishinoshima eruption was fueled by magma resulting from the mixing of silicic and mafic components in a shallow reservoir and by magma episodically supplied from deeper reservoirs. The lava effusion and the occasional explosive eruptions, sustained by the discharge of magma caused by the interactions of these multiple magma reservoirs at different depths, contributed to the formation and growth of the new Nishinoshima volcanic island since 2013. Comparisons with several examples of island-forming eruptions in shallow seas indicate that a long-lasting voluminous lava effusion with a discharge rate on the order of at least 104 m3/day (annual average) to 105 m3/day (monthly average) is required for the formation and growth of a new volcanic island with a diameter on km-scale that can survive sea-wave erosion over the years.


Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1287
Author(s):  
Giorgio Garuti ◽  
Evgenii V. Pushkarev ◽  
Irina A. Gottman ◽  
Federica Zaccarini

The mantle tectonite of the Kraka ophiolite contains several chromite deposits. Two of them consisting of high-Cr podiform chromitite—the Bolshoi Bashart located within harzburgite of the upper mantle transition zone and Prospect 33 located in the deep lherzolitic mantle—have been investigated. Both deposits are enveloped in dunite, and were formed by reaction between the mantle protolith and high-Mg, anhydrous magma, enriched in Al2O3, TiO2, and Na2O compared with boninite. The PGE mineralization is very poor (<100 ppb) in both deposits. Laurite (RuS2) is the most common PGM inclusion in chromite, although it is accompanied by erlichmanite (OsS2) and (Ir,Ni) sulfides in Prospect 33. Precipitation of PGM occurred at sulfur fugacity and temperatures of logƒS2 = (−3.0), 1300–1100 °C in Bolshoi Bashart, and logƒS2 = (−3.0/+1.0), 1100–800 °C in Prospect 33, respectively. The paucity of chromite-PGM mineralization compared with giant chromite deposits in the mantle tectonite in supra-subduction zones (SSZ) of the Urals (Ray-Iz, Kempirsai) is ascribed to the peculiar petrologic nature (low depleted lherzolite) and geodynamic setting (rifted continental margin?) of the Kraka ophiolite, which did not enable drainage of the upper mantle with a large volume of mafic magma.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xuxuan Ma ◽  
Zhongbao Zhao ◽  
Wenrong Cao ◽  
He Huang ◽  
Fahui Xiong ◽  
...  

The Quxu batholith of the Gangdese magmatic belt, southern Tibet, comprises predominantly Early Eocene calc-alkaline granitoids that feature a variety of types of magmatic microgranular enclaves and dikes. Previous studies have demonstrated that magma mixing played a crucial role in the formation of the Quxu batholith. However, the specific processes responsible for this mixing/hybridization have not been identified. The magmatic microgranular enclaves and dikes preserve a record of this magma mixing, and are therefore an excellent source of information about the processes involved. In this study, mesoscopic and microscopic magmatic structures have been investigated, in combination with analyses of mineral textures and chemical compositions. Texturally, most of the enclaves are microporphyritic, with large crystals such as clinopyroxene, hornblende, and plagioclase in a groundmass of hornblende, plagioclase, and biotite. Two types of enclave swarms can be distinguished: polygenic and monogenic swarms. Composite dikes are observed, and represent an intermediate stage between undisturbed mafic dike and dike-like monogenic enclave swarms. Our results reveal three distinct stages of magma mixing in the Quxu batholith, occurring at depth, during ascent and emplacement, and after emplacement, respectively. At depth, thorough and/or partial mixing occurred between mantle-derived mafic and crust-derived felsic magmas to produce hybrid magma. The mafic magma was generated from the primitive mantle, whereas the felsic end-member was produced by partial melting of the preexisting juvenile crust. Many types of enclaves and host granitoids are thus cogenetic, because all are hybrid products produced by the mixing of the two contrasting magmas in different proportions. In the second stage, segregation and differentiation of the hybrid magma led to the formation of the host granitoids as well as various types of magmatic microgranular enclaves. At this stage, mingling and/or local mixing happened during ascent and emplacement. In the final stage, mafic or hybrid magma was injected into early fractures in the crystallizing and cooling pluton to form dikes. Some dikes remained undisturbed, whereas others experienced local mingling and mixing to form composite dikes and eventually disturbed dike-like monogenic enclave swarms. In summary, our study demonstrates the coupling between magmatic texture and composition in an open-system batholith and highlights the potential of magmatic structures for understanding the magma mixing process.


2021 ◽  
pp. 1-20
Author(s):  
Feng Cong ◽  
De-Feng He ◽  
Wei-Qiang Ji ◽  
Liang Huang ◽  
Bo Xiong ◽  
...  

Abstract The orogenic process and crustal growth of the Changning–Menglian Palaeo-Tethys orogenic belt in the southeastern Tibetan Plateau is not fully understood. Triassic Caojian rhyolites and granites occur extensively in this orogenic belt and represent important constraints for this issue. This study aims to examine the relationships between the Triassic Caojian rhyolites and granites and to gain a better understanding of their possible petrogenesis. The study used zircon U–Pb geochronology, trace element analyses and Sr–Nd–Hf isotope data to better understand the relationships and possible origin of the rhyolites and granites. Recent zircon U–Pb ages indicated that the Caojian rhyolites were emplaced at 227.2 Ma, whereas age estimates for Caojian granites were slightly older (233.4–236.9 Ma). The Caojian rhyolites are enriched in large-ion lithophile elements and high-field-strength elements, with elevated FeOtot/MgO and Ga/Al ratios. However, they are significantly depleted in Ba, Sr, Eu, P and Ti. These geochemical characteristics indicate that they have an A-type affinity. Furthermore, the Caojian granites comprise biotite monzogranites and granodiorites and show unfractionated composition. Mineralogically, the Caojian granites were found to contain diagnostic I-type minerals such as hornblende. Geochemical data suggest that the petrogenesis of the Triassic Caojian rhyolites is characterized by rejuvenation of crystal mush represented by the Triassic Caojian granites. The necessary thermal input was supplied by mafic magma. This magmatic evolution was likely related to lithospheric delamination and upwelling of the asthenosphere during the Mid- to Late Triassic, forming post-collisional I-type granites and A-type volcanics in the Changning–Menglian Palaeo-Tethys orogenic belt.


2021 ◽  
pp. jgs2021-043
Author(s):  
Christian Haug Eide ◽  
Nick Schofield ◽  
John Howell ◽  
Dougal A Jerram

Igneous sheet-complexes transport magma through the crust, but most studies have focused on single segments of the magma-transport-system or have low resolution. In the Jameson Land Basin in East Greenland, reflection-seismic data and extensive outcrops give unparalleled constraints on mafic intrusions down to 15 km. This dataset shows how sill-complexes develop and how magma is transported from the mantle through sedimentary basins. The feeder zone of the sill-complex is a narrow zone below basin, where a magmatic underplate body impinges on thinned crust. Magma was transported through the crystalline crust through dykes. Seismic data and published geochemistry indicate magma was supplied from a magmatic underplate, without perceptible storage in crustal magma-chambers and crustal assimilation. As magma entered the sedimentary basin, it formed distributed, bowl-shaped sill-complexes throughout the basin. Large magma volumes in sills (4-20 times larger than the Skaergaard Intrusion), and few dykes highlight the importance of sills in crustal magma-transport. On scales smaller than 0.2 km, host-rock lithology, and particularly mudstone tensile strength-anisotropy, controls sill-architecture in the upper 10km of the basin, whereas sills are bowl-shaped below the brittle-ductile transition zone. On scales of kilometres and towards basin margins, tectonic stresses and lateral lithological changes dominate architecture of sills.Supplementary material:https://doi.org/10.6084/m9.figshare.c.5670470


2021 ◽  
pp. 1-16
Author(s):  
Peter Marchev ◽  
Raya Raicheva ◽  
Stoyan Georgiev ◽  
Ivan P. Savov ◽  
Danko Jelev

Abstract Generally all orogenic ultrapotassic rocks are formed after melting of metasomatized sub-continental lithospheric mantle via subducted crustal mica-bearing lithologies. Here we present another possible model, based on the study of the small Stomanovo ultrapotassic monzonite porphyry intrusion in the Central Rhodope Massif, Bulgaria. The monzonite dated at 30.50 ± 0.46 Ma is intruded into the voluminous Oligocene (31.63 ± 0.40 Ma) Bratsigovo–Dospat ignimbrite. The monzonite hosts both normally and reversely zoned clinopyroxene phenocrysts. The normally zoned clinopyroxene is characterized by gradually diminishing core-to-rim Mg no. (89–74), whereas the reversely zoned clinopyroxene has green Fe-rich cores (Mg no. 71–55) mantled by normally zoned clinopyroxene (Mg no. 87–74). Neither the core of the normally zoned clinopyroxene nor the Fe-rich green cores are in equilibrium with the host monzonite. This ultrapotassic monzonite shows more radiogenic Sr isotopes ((87Sr/86Sr)i = 0.71066) and ϵNd(t) = −7.8 to −8.0 that are distinct from the host ignimbrites with (87Sr/86Sr)i = 0.70917–0.70927 and ϵNd(t) = −4.6 to −6.5. The Sr–Nd isotopic data and the presence of copious zircon xenocrysts from the underlying metamorphic basement suggest extensive crustal assimilation. Our observations indicate that the Stomanovo ultrapotassic monzonite formed after extensive lower or middle crustal fractional crystallization from an evolved magma producing cumulates. The process was followed by hybridization with primitive mantle-derived magma and subsequent continuous crustal contamination. We suggest that instead of inheriting their high K2O and large-ion lithophile element enrichments from slab-derived/metasomatic fluids, the Stomanovo ultrapotassic monzonite may owe some of its unusually high alkalinity to the assimilation of potassium-rich phases from the Rhodope Massif basement rocks.


Minerals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1099
Author(s):  
Ismail Hadimi ◽  
Nasrrddine Youbi ◽  
Abdelhak Ait Lahna ◽  
Mohamed Khalil Bensalah ◽  
Oussama Moutbir ◽  
...  

The NE–SW trending Tiddas Souk Es-Sebt des Ait Ikko (TSESDAI) basin, located at 110 km southeast of Rabat, in the region of Khmesset between the village of Tiddas Souk Es-Sebt des Ait Ikko, is the third largest late Palaeozoic continental trough in the northern Central Moroccan Meseta. It is a ~20 km long and ~2–3 km wide basin, comprising mainly mixed volcano-sedimentary reddish-purple continental Permian rocks laying with an angular unconformity on Visean deep marine siliciclastic sediments and unconformably overlain by the Triassic and Cenozoic formations. In this study we aim to better determine the age of Permian volcanics and their chemical and mineralogical characteristics, as well as assess the provenance of inherited zircons, thus contributing to the understanding of the late stages of the Variscan orogeny in Morocco. The standard volcanic succession includes the following terms: (i) andesites, lapilli tuffs and andesitic ash deposits; (ii) accumulations of rhyolitic lavas; (iii) lapilli tuffs and rhyolitic ash (formation F1); (iv) flows and breccias of dacites; (v) andesite flows; and (vi) basaltic flows. The various volcanic and subvolcanic studied rocks display calc-alkaline-series characteristics with high contents of SiO2, Al2O3, CaO, MgO, and relatively abundant alkalis, and low contents of MnO. In the classification diagram, the studied facies occupy the fields of andesites, trachy-basalts, dacites, trachydacites, and rhyolites and display a sub-alkaline behavior. These lavas would be derived from a parental mafic magma (basalts) produced by partial fusion of the upper mantle. Specific chemical analyses that were carried out on the mineralogical phases (biotite and pyroxene) revealed that the examined biotites can be classified as magnesian and share similarities with the calc-alkaline association-field, while the clinopyroxenes are mainly augites and plot on the calc-alkaline orogenic basalt field. Andesites and dacites of TSESDAI show similarities with the rocks of the calc-alkaline series not linked to active subduction and which involve a continental crust in their genesis. The existence of enclaves in the lavas of the TSESDAI massif; the abnormally high contents of Rb, Ba, Th, and La; and the systematic anomalies in TiO2 and P2O5 indicate also a crustal contamination mechanism. Three magmatic episodes are distinguished with two episodes that correspond to an eruptive cycle of calc-alkaline andesites and rhyolites followed by a basaltic episode. The SHRIMP U–Pb geochronologic data of zircons recovered from the rhyolite dome of Ari El Mahsar in TSESDAI basin show a Concordia age of 286.4 ± 4.7 Ma interpreted to date the magmatic crystallization of this dome. Thus, the rhyolite likely belongs to the third magmatic episodes of TSESDAI.


2021 ◽  
pp. 1-28
Author(s):  
Gangqiang Chen ◽  
Hailei Liu ◽  
Yuantao Tang ◽  
Zhijie Niu ◽  
Jing Yu ◽  
...  

A stage of mafic magmatic activity occurred in Early Permian in the Dabasong Uplift of Junggar Basin, part of the magma intruded into the normal sedimentary and shallow buried fine sandstone to form diabase, and part of the magma erupted to form basalt. The surrounding fine sandstone just entered in the early diagenetic stage A when the magma intruded. The compaction of the surrounding clastic rock and rupture of a small number of clastic grains were caused by the extrusion of the magma intrusion. The presence of chemically deposited alkaline minerals such as calcite, dolomite, shortite, natural alkali, and northupite indicates an alkali lake sedimentary environment for the Fengcheng Formation. Primary alkaline minerals dissolved from the surrounding rocks were subsequently transported and precipitated to form cements. The formation of the calcite cements and calcite metasomatism resulted in considerable densification of the surrounding rock during early diagenesis and destruction of the reservoir quality. The mafic magma had abundant Fe2+ and Mg2+ ions and was deficient in K+ ions, resulting in large amounts of chlorite and iron precipitation in the surrounding rock mainly composed of clay. We have analyzed the influence of an ultrashallow intrusion on the surrounding clastic rock during the early diagenetic period, which provided a typical reference for establishing a systematic mechanistic model of how magmatic intrusions affect the surrounding rock.


2021 ◽  
Author(s):  
Kang Cao ◽  
Zhi-Ming Yang ◽  
Noel C. White ◽  
Zeng-Qian Hou

Abstract The giant Pulang porphyry Cu-Au district (446.8 Mt at 0.52% Cu and 0.18 g/t Au) is located in the Yidun arc, eastern Tibet. The district is hosted in an intrusive complex comprising, in order of emplacement, premineralization fine-grained quartz diorite and coarse-grained quartz diorite, intermineralization quartz monzonite, and late-mineralization diorite porphyry, which were all emplaced at ca. 216 ± 2 Ma. Mafic magmatic enclaves are found in both the coarse-grained quartz diorite and quartz monzonite. The well-preserved primary mineral crystals in such a systematic magma series (including contemporaneous relatively mafic intrusions) with well-defined timing provide an excellent opportunity to investigate upper crustal magma reservoir processes, particularly to test the role of mafic magma recharge in porphyry Cu formation. Two groups of amphibole crystals, with different aluminum contents, are observed in these four rocks. Low-Al amphibole crystals (Аl2О3 = 6.2–7.6 wt %) with crystallization temperatures of ~780°C mainly occur in the coarse-grained quartz diorite and quartz monzonite, whereas high-Al amphibole crystals (Al2O3 = 8.0–13.3 wt %) with crystallization temperatures of ~900°C mainly occur in the fine-grained quartz diorite and diorite porphyry. These characteristics, together with detailed petrographic observations and mineral chemistry studies, indicate that the coarse-grained quartz diorite and quartz monzonite probably formed by crystal fractionation in the same felsic magma reservoir, whereas the fine-grained quartz diorite and diorite porphyry formed from relatively mafic magmas sourced from different magma reservoirs. The occurrence of mafic magmatic enclaves, disequilibrium phenocryst textures, and cumulate clots indicates that the coarse-grained quartz diorite and quartz monzonite evolved in an open crustal magma storage system through a combination of crystal fractionation and repeated mafic magma recharge. Mixing with incoming batches of hotter mafic magma is indicated by the appearance of abundant microtextures, such as reverse zoning (Na andesine core with Ca-rich andesine or labradorite rim overgrowth), sharp zoning (Ca-rich andesine or labradorite core with abrupt rimward anorthite decrease) and patchy core (Ca-rich andesine or labradorite and Na andesine patches) textured plagioclase, zoned amphibole, high-Al amphibole clots, skeletal biotite, and quartz ocelli (mantled quartz xenocrysts). Using available partitioning models for apatite crystals from the coarse-grained quartz diorite, quartz monzonite, and diorite porphyry, we estimated absolute magmatic S contents to be 20–100, 25–130, and &gt;650 ppm, respectively. Estimates of absolute magmatic Cl contents for these three rocks are 1,000 ± 600, 1,800 ± 1,100, and 1,300 ± 1,000 ppm, respectively. The slight increase in both magmatic S and Cl contents from the premineralization coarse-grained quartz diorite magma to intermineralization quartz monzonite magma was probably due to repeated recharge of the relatively mafic diorite porphyry magma with higher S but similar Cl contents. Mass balance constraints on Cu, S, and Cl were used to estimate the minimum volume of magma required to form the Pulang porphyry Cu-Au deposit. Magma volume calculated using Cu mass balance constraints implies that a minimum of 21–36 km3 (median of 27 km3) of magma was required to provide the total of 2.3 Mt of Cu at Pulang. This magma volume can explain the Cl endowment of the deposit but is unlikely to supply the sulfur required. Recharge of 5–11 km3 of diorite porphyry magma to the felsic magma reservoir is adequate to account for the additional 6.5–15 Mt of S required at Pulang. Repeated diorite porphyry magma recharge may have supplied significant amounts of S and some Cl and rejuvenated the porphyry system, thus aiding formation of the large, long-lived magma reservoir that produced the porphyry Cu-Au deposit at Pulang.


Sign in / Sign up

Export Citation Format

Share Document