Analysis of plane-strain rotational compression using the upper-bound method

1989 ◽  
Vol 19 (2) ◽  
pp. 211-222 ◽  
Author(s):  
K.H. Na ◽  
N.S. Cho
2008 ◽  
Vol 367 ◽  
pp. 201-208 ◽  
Author(s):  
Rosario Domingo ◽  
A.M. Camacho ◽  
E.M. Rubio Alvir ◽  
M.A. Sebastián

This paper present a study focused on hot forward extrusion by upper bound method. In particular, hot forward extrusion of plates through square face dies under plane strain conditions. Slater defines the models used for large fractional reduction. Different models have been taken in account; they are dissimilar in relation to the dead metal zone (if covers or not the entire die face, partially or totally). Triangular rigid patterns of velocity discontinuities have been validated by analytical methods and a range of use for the selected configurations has been established. This methodology has been applied to other process with good results. Thus, the mechanical parameters analysed are fractional reduction, dead metal zone, length die and friction. Finally the calculation of the energy has been achieved by upper bound method. The results allow researching an optimisation of use of upper bound method in hot forward extrusion.


2003 ◽  
Vol 143-144 ◽  
pp. 539-545 ◽  
Author(s):  
E.M Rubio Alvir ◽  
M.A Sebastián Pérez ◽  
A Sanz Lobera

1968 ◽  
Vol 90 (1) ◽  
pp. 45-50
Author(s):  
R. G. Fenton

The upper bound of the average ram pressure, based on an assumed radial flow velocity field, is derived for plane strain extrusion. Ram pressures are calculated for a complete range of reduction ratios and die angles, considering a wide range of frictional conditions. Results are compared with upper-bound ram pressures obtained by considering velocity fields other than the radial flow field, and it is shown that for a considerable range of reduction ratios and die angles, the radial flow field yields better upper bounds for the average ram pressure.


Sign in / Sign up

Export Citation Format

Share Document