The load analysis of the plane—strain forging processes using the upper-bound stream-function elemental technique

1995 ◽  
Vol 47 (3-4) ◽  
pp. 345-359 ◽  
Author(s):  
J.P. Wang ◽  
Y.T. Lin

1968 ◽  
Vol 90 (1) ◽  
pp. 45-50
Author(s):  
R. G. Fenton

The upper bound of the average ram pressure, based on an assumed radial flow velocity field, is derived for plane strain extrusion. Ram pressures are calculated for a complete range of reduction ratios and die angles, considering a wide range of frictional conditions. Results are compared with upper-bound ram pressures obtained by considering velocity fields other than the radial flow field, and it is shown that for a considerable range of reduction ratios and die angles, the radial flow field yields better upper bounds for the average ram pressure.





1970 ◽  
Vol 92 (1) ◽  
pp. 158-164 ◽  
Author(s):  
P. C. T. Chen

A method for selecting admissible velocity fields is presented for incompressible material. As illustrations, extrusion processes through three basic types of curved dies have been treated: cosine, elliptic, and hyperbolic. Upper-bound theorem is used in obtaining mean extrusion pressures and also in choosing the most suitable deformation pattern for extrusion through square dies. Effects of die geometry, friction, and material properties are discussed.





2010 ◽  
Vol 172 (1) ◽  
pp. 55-67 ◽  
Author(s):  
Wei-Ching Yeh ◽  
Ming-Chang Wu ◽  
Jia-Jyun Hong


1979 ◽  
Vol 46 (2) ◽  
pp. 317-321 ◽  
Author(s):  
N. S. Das ◽  
J. Banerjee ◽  
I. F. Collins

This paper presents the results of computer calculations of a class of slipline solutions for compression between parallel dies with slipping friction at the die-metal interface such that the frictional shear traction is a constant proportion of the yield stress. The slipline fields considered here have previously only been suggested qualitatively. The fields are of “indirect type”, requiring the solution of linear integral equations. They have been analyzed and computed here using the recently developed matrix operator procedure. The numerical results obtained are compared with those obtained from approximate upper bound and other “technological” theories.



2008 ◽  
Vol 367 ◽  
pp. 201-208 ◽  
Author(s):  
Rosario Domingo ◽  
A.M. Camacho ◽  
E.M. Rubio Alvir ◽  
M.A. Sebastián

This paper present a study focused on hot forward extrusion by upper bound method. In particular, hot forward extrusion of plates through square face dies under plane strain conditions. Slater defines the models used for large fractional reduction. Different models have been taken in account; they are dissimilar in relation to the dead metal zone (if covers or not the entire die face, partially or totally). Triangular rigid patterns of velocity discontinuities have been validated by analytical methods and a range of use for the selected configurations has been established. This methodology has been applied to other process with good results. Thus, the mechanical parameters analysed are fractional reduction, dead metal zone, length die and friction. Finally the calculation of the energy has been achieved by upper bound method. The results allow researching an optimisation of use of upper bound method in hot forward extrusion.



1978 ◽  
Vol 18 (9) ◽  
pp. 738-740 ◽  
Author(s):  
Lewis Erwin
Keyword(s):  


1980 ◽  
Vol 102 (2) ◽  
pp. 109-117 ◽  
Author(s):  
M. Kiuchi ◽  
B. Avitzur

A variety of mathematical models may be used to analyze plastic deformation during a metal-forming process. One of these methods—limit analysis—places the estimate of required power between an upper bound and a lower bound. The upper- and lower-bound analysis are designed so that the actual power or forming stress requirement is less than that predicted by the upper bound and greater than that predicted by the lower bound. Finding a lower upper-bound and a higher lower-bound reduces the uncertainty of the actual power requirement. Upper and lower bounds will permit the determination of such quantities as required forces, limitations on the process, optimal die design, flow patterns, and prediction and prevention of defects. Fundamental to the development of both upper-bound and lower-bound solutions is the division of the body into zones. For each of the zones there is written either a velocity field (upper bound) or a stress field (lower bound). A better choice of zones and fields brings the calculated values closer to actual values. In the present work, both upper- and lower-bound solutions are presented for plane-strain flow through inclined converging dies. For the upper bound, trapezoidal velocity fields, uni-triangular velocity fields, and multi-triangular velocity fields have been dealt with and the solutions compared to previously published work on cylindrical velocity fields. It was found that in different domains of the various combinations of the process parameters, different patterns of flow (cylindrical, triangular, etc.) provide lower upper-bound solutions. The lower-bound solution for plane-strain flow through inclined converging planes is newly developed.



Sign in / Sign up

Export Citation Format

Share Document