Kinetic study of coal slurry electrolysis-oxidation and desulfurization of Illinois No. 6 coal by aqueous ferric chloride

1988 ◽  
Vol 19 (1) ◽  
pp. 15-29 ◽  
Author(s):  
Koei Kawakami ◽  
Kazunori Fujio ◽  
Koichiro Kusunoki ◽  
Katsuki Kusakabe ◽  
Shigeharu Morooka
1988 ◽  
Vol 27 (4) ◽  
pp. 571-576 ◽  
Author(s):  
Koei Kawakami ◽  
Junko Sato ◽  
Koichiro Kusunoki ◽  
Katsuki Kusakabe ◽  
Shigeharu Morooka

2008 ◽  
Vol 105 (12) ◽  
pp. 601-608
Author(s):  
Seung Min Han ◽  
Dong Joon Min ◽  
Joo Hyun Park ◽  
Jung Ho Park ◽  
Jong Min Park
Keyword(s):  

1983 ◽  
Vol 49 (03) ◽  
pp. 199-203 ◽  
Author(s):  
V M Yomtova ◽  
N A Stambolieva ◽  
B M Blagoev

SummaryIt was found that the effect of heparin on the amidase activity of urokinase (E C 3.4.21.31), plasmin (E C 3.4.21.7) and trypsin (E C 3.4.21.4) depended on the substrate used. No effect of heparin on the amidase activity of urokinase and trypsin was observed when Pyro Glu-Gly-Arg-p-nitroanilide (S-2444) and α-N-acetyl-L-lysine-p-nitroanilide (ALNA) were used as substrates. Heparin acted as a uncompetitive inhibitor of trypsin (Ki = 1.2×10-6 M), plasmin (Ki = 4.9×10-6 M) and urokinase (Ki = l.0×10-7 M) when Bz-Phe-Val-Arg-p-nitroanilide (S-2160), H-D-Val-Leu-Lys-p-nitroanilide (S-2251) and plasminogen, respectively, were used as substrates. These results, as well as the data obtained by studying the effect of the simultaneous presence of heparin and competitive inhibitors suggest that although heparin is not bound at the active center of these enzymes, it may influence the effectivity of catalysis.


1981 ◽  
Vol 31 (1) ◽  
pp. 388-394 ◽  
Author(s):  
Mahmoud El-Sawi ◽  
Antonio Iannibello ◽  
Fernando Morelli ◽  
Ganfranco Gatalano ◽  
Francesco Intrieri ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document