Evaluation of sediment transport formulae in coastal engineering practice — Discussion

1980 ◽  
Vol 4 ◽  
pp. 177-180 ◽  
Author(s):  
D.H. Willis
Author(s):  
Douglas L. Inman ◽  
Scott A. Jenkins ◽  
M. Hany S. Elwany

1976 ◽  
Vol 1 (15) ◽  
pp. 70 ◽  
Author(s):  
Richard O. Bruno ◽  
Christopher G. Gable

Analysis of longshore transport at a littoral barrier is presented. Channel Islands Harbor, California was selected as the study site because its offshore breakwater and jetties form a unique complete littoral barrier. Through repetitive surveys an accurate determination of longshore material transport in one direction was made. Measured transport rates ranged from 160,000 to 1,284,000 cubic meters per year. Utilizing visual observations of surf parameters, estimates of longshore wave thrust were computed. The range of wave thrust was 145 to 1,988 Newtons per meter. Comparison of the relation of wave thrust and longshore sediment transport is made. This study indicates that in an environment of high transport, nearly twice as much transport is predicted tinder corresponding wave thrust as that of the data summarized in the Coastal Engineering Research Center's Shore Protection Manual.


Author(s):  
Iñigo J. Losada ◽  
Paula Camus ◽  
Alexandra Toimil ◽  
Antonio Espejo ◽  
Cristina Izaguirre

Coastal engineers play a leading role in assessing climate change impacts in coastal and low-lying areas and in the design and implementation of adaptation solutions to build resilient coastal systems. Given the continuous growth of coastal communities and assets along the world coastlines, the need to protect and preserve natural and socioeconomic coastal systems and the escalating impacts of climate change (Wong et al. 2014), there is an urgent demand by decision makers for coastal engineering practice dealing with risk assessment and adaptation under high levels of uncertainty.


2002 ◽  
Vol 1 (28) ◽  
Author(s):  
Jane McKee Smith

*** Available Only Through World Scientific *** http://www.worldscibooks.com/engineering/5165.html This book contains more than 300 papers presented at the 28th International Conference on Coastal Engineering, held in Cardiff, Wales, in July 2002. It is divided into five parts: coastal waves; nearshore currents, swash, and long waves; coastal structures; sediment transport; and coastal morphology, beach nourishment, and coastal management. The papers cover a broad range of topics, including theory, numerical and physical modeling, field measurements, case studies, design, and management. Coastal Engineering 2002 provides engineers, scientists, and planners with state-of-the-art information on coastal engineering and coastal processes.


1982 ◽  
Vol 1 (18) ◽  
pp. 94
Author(s):  
L. Lenhoff

This paper is aimed at the establishment of a generally applicable criterion for the onset of grain motion under the influence of oscillatory flow. Data from previous studies are used in a dimensional analysis and an empirically derived relationship between the dimensionless parameters R* (shear Reynolds number) and D* (dimensionless grain parameter) is proposed as a criterion to be used in coastal engineering problems. This study forms part of a larger programme by the Sediment Dynamics Division of the National Research Institute for Oceanology in Stellenbosch, RSA, which is aimed at the reevaluation and updating of the input parameters and relationships for the predictive equations for coastal sediment transport.


Author(s):  
Patrick J. Lynett

This Proceedings contains 550 papers from the 36th International Conference on Coastal Engineering, which was held in Baltimore, Maryland from July 30 to August 3, 2018. The Proceedings is divided into six parts: Papers; Waves; Swash, Nearshore Currents, and Long Waves; Sediment Transport and Morphology; Coastal Structures; and Coastal Management, Environment, and Risk. The “Papers” sections includes full length Proceedings papers, covering a broad range of topics including theory, numerical and physical modeling, field measurements, case studies, design, and management. The other sections include abstract and presentation files, as presented at the conference. These submissions provide engineers, scientists, and planners state-of-the-art information on coastal engineering and coastal processes.


1978 ◽  
Vol 1 (16) ◽  
pp. 92 ◽  
Author(s):  
Richard J. Seymour ◽  
David B. Duane

The models for predicting longshore transport of sediment along straight coastlines that are presently in general use were derived empirically from very sparse measurements of both the forcing function (waves and currents) and the response function (sediment motions). A detailed treatment of these data sets is contained in Greer and Madsen (1978). In addition to the generally unsatisfactory nature of the basic measurements upon which they were based, the models may be deficient because they fail to employ such potentially significant factors as wind stress, sediment size distribution, bottom slope and spatial variations in waves and currents, including the effects of rip currents. Although these models have served certain engineering needs, there is a strong measure of uncertainty in the coastal engineering community about their general applicability. Certainly, because they are empirical rather than physically reasoned models, there is no rational means for extending their usefulness to predicting transport where coastlines are not straight -- such as the case of a tidal inlet. The economic impact of sediment transport in the nearshore regime is enormous and the need for improved predictive tools appears to be universally accepted. To be most useful, these improved models must be globally applicable. This implies very strongly that they must be based upon a thorough understanding of surf zone dynamics and the details of the response of the sediment. The surf zone flow fields are highly complex and nonlinear, implying an equally complex and difficult system of sediment responses. Characterizing the entire forcing and response functions simultaneously requires large and expensive field measurement programs that greatly exceed the present state of the art of measurement and analysis.' The approach of the last two decades of single investigators working at laboratory scale or in the ocean with a few single point measurements would not appear to ever meet these needs. However, the present costs for coastal dredging and shoreline protection, which can be measured in billions of dollars on a world scale, argue for a major undertaking to develop better predictive tools. In an attempt to satisfy these needs, an ad hoc group was formed at the Fifteenth Coastal Engineering Conference in Honolulu to plan a large scale and coordinated series of investigations leading to improved sediment transport predictive models. Less than a year later, the Nearshore Sediment Transport Study was initiated under the sponsorship of the Office of Sea Grant.


Sign in / Sign up

Export Citation Format

Share Document