nearshore sediment transport
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 4)

H-INDEX

5
(FIVE YEARS 1)

Author(s):  
Irene Watts ◽  
Gary Zarillo

The Sebastian Inlet Florida Coastal Processes Model computes sediment transport pathways in the nearshore to support sediment management activities. Longshore sediment transport rates are computed by the model and compared with field data. The model is run with two alternative specifications of hard bottom to investigate the impact on computed transport rates. One alternative specifies known hard bottom outcrop locations and the second, a uniform one-meter overburden throughout the model domain. The uniform overburden specification improved longshore sediment transport rate computations throughout the model domain. The goal of this work is to improve upon nearshore sediment transport and morphology by addressing uncertainty in hard bottom locations and ephemeral coverage. This paper documents the modeling effort and the changes necessary to improve model performance in the nearshore.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/u1bNOca5qUo


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Xiaojian Liu ◽  
Cheng Liu ◽  
Xiaowei Zhu ◽  
Yong He ◽  
Qisong Wang ◽  
...  

Breaking wave-induced scour is recognized as one of the major causes of coastal erosion and offshore structure failure, which involves in the full 3D water-air-sand interaction, raising a great challenge for the numerical simulation. To better understand this process, a nonlinear 3D numerical model based on the open-source CFD platform OpenFOAM® was self-developed in this study. The Navier–Stokes equations were used to compute the two-phase incompressible flow, combining with the finite volume method (FVM) to discretize calculation domain, a modified VOF method to track the free surface, and a k−ε model to closure the turbulence. The nearshore sediment transport process is reproduced in view of shear stress, suspended load, and bed load, in which the terms of shear stress and suspended load were updated by introducing volume fraction. The seabed morphology is updated based on Exner equation and implemented by dynamic mesh technique. The mass conservative sand slide algorithm was employed to avoid the incredible vary of the bed mesh. Importantly, a two-way coupling method connecting the hydrodynamic module with the beach morphodynamic module is implemented at each computation step to ensure the fluid-sediment interaction. The capabilities of this model were calibrated by laboratory data from some published references, and the advantages/disadvantages, as well as proper recommendations, were introduced. Finally, nonbreaking- and breaking wave-induced scour around the monopile, as well as breaking wave-induced beach evolution, were reproduced and discussed. This study would be significantly helpful to understand and evaluate the nearshore sediment transport.


2019 ◽  
Vol 7 (6) ◽  
pp. 188 ◽  
Author(s):  
Boechat Albernaz ◽  
Ruessink ◽  
Jagers ◽  
Kleinhans

Nearshore morphological modelling is challenging due to complex feedback betweenhydrodynamics, sediment transport and morphology bridging scales from seconds to years.Such modelling is, however, needed to assess long-term effects of changing climates on coastalenvironments, for example. Due to computational efficiency, the sediment transport driven bycurrents and waves often requires a parameterization of wave orbital velocities. A frequently usedparameterization of skewness-only was found to overfeed the coast unrealistically on a timescale ofyears—decades. To improve this, we implemented a recently developed parameterization accountingfor skewness and asymmetry in a morphodynamic model (Delft3D). The objective was to compare theeffects of parameterizations on long-term coastal morphodynamics. We performed simulations withdefault and calibrated sediment transport settings, for idealized coastlines, and compared the resultswith measured data from analogue natural systems. The skewness-asymmetry parameterization wasfound to predict overall stable coastlines within the measured envelope with wave-related calibrationfactors within a factor of 2. In contrast, the original parameterization required stronger calibration,which further affected the alongshore transport rates, and yet predicted erosion in deeper areas andunrealistic accretion near the shoreline. The skewness-asymmetry parameterization opens up thepossibility of more realistic long-term morphological modelling of complex coastal systems.


Author(s):  
Brecht Devolder ◽  
Peter Troch ◽  
Pieter Rauwoens

The surf zone dynamics are governed by important processes such as turbulence generation , nearshore sediment transport , wave run-up and wave overtopping at a coastal structure. During field observations , it is very challenging to measure and quantify wave breaking turbulence . Complementary to experimental laboratory studies in a more controlled environment , numerical simulations are highly suitable to understand and quantify surf zone processes more accurately. In this study, wave propagation and wave breaking over a fixed barred beach profile is investigated using a two­ phase Navier-Stokes flow solver. We show that accurate predictions of the turbulent two-phase flow field require special attention regarding turbulence modelling. The numerical wave flume is implemented in the open­ source OpenFOAM library. The computed results (surface elevations , velocity profiles and turbulence levels) are compared against experimental measurements in a wave flume (van der A et al., 2017) .


2017 ◽  
Vol 385 ◽  
pp. 293-303 ◽  
Author(s):  
I. Bosnic ◽  
J. Cascalho ◽  
R. Taborda ◽  
T. Drago ◽  
J. Hermínio ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document