A relativistic green matrix method to calculate the surface states in a three-dimensional crystal slab

1980 ◽  
Vol 101 (1) ◽  
pp. 49-66
Author(s):  
F. Dhoore ◽  
P. Phariseau
2021 ◽  
Author(s):  
Woun Kang ◽  
Felix Spathelf ◽  
Benoit Fauqué ◽  
Yuki Fuseya ◽  
Kamran Behnia

Abstract The interface between a solid and vacuum can become electronically distinct from the bulk. This feature, encountered in the case of quantum Hall effect, has a manifestation in insulators with topologically protected metallic surface states. Non-trivial Berry curvature of the Bloch waves or periodically driven perturbation are known to generate it. Here, by studying the angle-dependent magnetoresistance in prismatic bismuth crystals of different shapes, we detect a robust surface contribution to electric conductivity when the magnetic field is aligned parallel to a two-dimensional boundary between the three-dimensional crystal and vacuum. The effect is absent in antimony, which has an identical crystal symmetry, a similar Fermi surface structure and equally ballistic carriers, but an inverted band symmetry and a topological invariant of opposite sign. Our observation points to the relevance of band symmetries to survival of metallicity at the boundary interrupting the cyclotron orbits.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Qiang Wang ◽  
Yong Ge ◽  
Hong-xiang Sun ◽  
Haoran Xue ◽  
Ding Jia ◽  
...  

AbstractCrystalline materials can host topological lattice defects that are robust against local deformations, and such defects can interact in interesting ways with the topological features of the underlying band structure. We design and implement a three dimensional acoustic Weyl metamaterial hosting robust modes bound to a one-dimensional topological lattice defect. The modes are related to topological features of the bulk bands, and carry nonzero orbital angular momentum locked to the direction of propagation. They span a range of axial wavenumbers defined by the projections of two bulk Weyl points to a one-dimensional subspace, in a manner analogous to the formation of Fermi arc surface states. We use acoustic experiments to probe their dispersion relation, orbital angular momentum locked waveguiding, and ability to emit acoustic vortices into free space. These results point to new possibilities for creating and exploiting topological modes in three-dimensional structures through the interplay between band topology in momentum space and topological lattice defects in real space.


Physica ◽  
1966 ◽  
Vol 32 (7) ◽  
pp. 1274-1282 ◽  
Author(s):  
Maria Stȩślicka ◽  
K.F. Wojciechowski

1995 ◽  
Vol 34 (19) ◽  
pp. 4926-4929 ◽  
Author(s):  
Tobias Vossmeyer ◽  
Guenter Reck ◽  
Lynne Katsikas ◽  
Erhard T. K. Haupt ◽  
Burkhard Schulz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document