Two-dimensional random walk description of fluid flow in the presence of a wall: The origin of stick versus slip boundary conditions in the continuum limit

1983 ◽  
Vol 117 (1) ◽  
pp. 1-16 ◽  
Author(s):  
H. Dekker ◽  
I. Oppenheim
2017 ◽  
Vol 821 ◽  
pp. 31-58 ◽  
Author(s):  
Pierre-Yves Passaggia ◽  
Alberto Scotti ◽  
Brian White

The linear instability mechanisms of horizontal convection in a rectangular cavity forced by a horizontal buoyancy gradient along its surface are investigated using local and global stability analyses for a Prandtl number equal to unity. The results show that the stability of the base flow, a steady circulation characterized by a narrow descending plume and a broad upwelling region, depends on the Rayleigh number, $Ra$. For free-slip boundary conditions at a critical value of $Ra\approx 2\times 10^{7}$, the steady base flow becomes unstable to three-dimensional perturbations, characterized by counter-rotating vortices originating within the plume region. A Wentzel–Kramers–Brillouin (WKB) method applied along closed streamlines demonstrates that this instability is of a Rayleigh–Taylor type and can be used to accurately reconstruct the global instability mode. In the case of no-slip boundary conditions, the base flow also becomes unstable to a self-sustained two-dimensional instability whose critical Rayleigh number is $Ra\approx 1.7\times 10^{8}$. Beyond this critical $Ra$, two-dimensional equilibrium stationary states of the Navier–Stokes equations are computed using the selective frequency damping method. The two-dimensional onset of instability is shown to be characterized by a family of modes also originating within the plume. A local spatio-temporal stability analysis shows that the flow becomes absolutely unstable at the origin of the plume. Taken together, these results illustrate the mechanisms behind the onset of turbulence that has been observed in horizontal convection.


2021 ◽  
Vol 65 (1) ◽  
pp. 1-23
Author(s):  
Ranis Ibragimov ◽  
◽  
Vesselin Vatchev ◽  

We examine the viscous effects of slip boundary conditions for the model describing two-dimensional Navier-Stokes flows in a plane diffuser. It is shown that the velocity profile is related to a half period shifted Weierstrass function with two parameters. This allows to approximate the explicit solution by a Taylor series expansion with two new micro- parameters, that can be measured in physical experiments. It is shown that the assumption for no-slip boundary conditions is stable in the sense that a small perturbation of the boundary values result in a small perturbation in the solutions.


Author(s):  
Tanveer Sajid ◽  
Wasim Jamshed ◽  
Faisal Shahzad ◽  
Esra Karatas Akgül ◽  
Kottakkaran Sooppy Nisar ◽  
...  

2014 ◽  
Vol 136 (5) ◽  
Author(s):  
Leila Issa ◽  
Issam Lakkis

We present reduced-order models of unsteady low-Mach-number ideal gas flows in two-dimensional rectangular microchannels subject to first-order slip-boundary conditions. The pressure and density are related by a polytropic process, allowing for isothermal or isentropic flow assumptions. The Navier–Stokes equations are simplified using low-Mach-number expansions of the pressure and velocity fields. Up to first order, this approximation results in a system that is subject to no-slip condition at the solid boundary. The second-order system satisfies the slip-boundary conditions. The resulting equations and the subsequent pressure-flow-rate relationships enable modeling the flow using analog circuit components. The accuracy of the proposed models is investigated for steady and unsteady flows in a two-dimensional channel for different values of Mach and Knudsen numbers.


1992 ◽  
Vol 182 (4) ◽  
pp. 593-598 ◽  
Author(s):  
Jaume Masoliver ◽  
Josep M. Porrà ◽  
George H. Weiss

Sign in / Sign up

Export Citation Format

Share Document