Mixed Convection Fluid Flow and Heat Transfer Analysis over a Vertical Flat Plate having Slip Boundary Conditions with oxide Nano fluids

Author(s):  
Srinivasa Rao Gogulapati ◽  
Sridhar K ◽  
Sharma K.V
2015 ◽  
Vol 39 (2) ◽  
pp. 357-366 ◽  
Author(s):  
Bikash Sahoo ◽  
Sébastien Poncet ◽  
Fotini Labropulu

Numerical solutions are obtained for the fully coupled and highly nonlinear system of differential equations, arising due to the steady Kármán flow and heat transfer of a viscous fluid in a porous medium. The conventional no-slip boundary conditions are replaced by partial slip boundary conditions owing to the roughness of the disk surface. Combined effects of the slip λ and porosity γ parameters on the momentum and thermal boundary layers are studied in detail. Both parameters produce the same effects on the mean velocity profiles, such that all velocity components are reduced by increasing either λ or γ. The temperature slip factor β has a dominating influence on the temperature profiles by decreasing the fluid temperature in the whole domain. The porosity parameter strongly decreases the heat transfer coefficient at the wall for low values of β and tends to an asymptotical limit around 0.1 for β ≃ 10. The porosity parameter γ increases the moment coefficient at the disk surface, which is found to monotonically decrease with λ.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258367
Author(s):  
Tanveer Sajid ◽  
Wasim Jamshed ◽  
Faisal Shahzad ◽  
M. A. Aiyashi ◽  
Mohamed R. Eid ◽  
...  

The present article presents a novel idea regarding the implementation of Tiwari and Das model on Reiner-Philippoff fluid (RPF) model by considering blood as a base fluid. The Cattaneo-Christov model and thermal radiative flow have been employed to study heat transfer analysis. Tiwari and Das model consider nanoparticles volume fraction for heat transfer enhancement instead of the Buongiorno model which heavily relies on thermophoresis and Brownian diffusion effects for heat transfer analysis. Maxwell velocity and Temperature slip boundary conditions have been employed at the surface of the sheet. By utilizing the suitable transformations, the modeled PDEs (partial-differential equations) are renewed in ODEs (ordinary-differential equations) and treated these equations numerically with the aid of bvp4c technique in MATLAB software. To check the reliability of the proposed scheme a comparison with available literature has been made. Other than Buongiorno nanofluid model no attempt has been made in literature to study the impact of nanoparticles on Reiner-Philippoff fluid model past a stretchable surface. This article fills this gap available in the existing literature by considering novel ideas like the implementation of carbon nanotubes, CCHF, and thermal radiation effects on Reiner-Philippoff fluid past a slippery expandable sheet. Momentum, as well as temperature slip boundary conditions, are never studied and considered before for the case of Reiner-Philippoff fluid past a slippery expandable sheet. In the light of physical effects used in this model, it is observed that heat transfer rate escalates as a result of magnification in thermal radiation parameter which is 18.5% and skin friction coefficient diminishes by the virtue of amplification in the velocity slip parameter and maximum decrement is 67.9%.


2018 ◽  
Vol 389 ◽  
pp. 164-175
Author(s):  
Houssem Laidoudi ◽  
Bilal Blissag ◽  
Mohamed Bouzit

In this paper, the numerical simulations of laminar mixed convection heat transfer from row of three isothermal square cylinders placed in side-by-side arrangement are carried out to understand the behavior of fluid flow around those cylinders under gradual effect of thermal buoyancy and its effect on the evacuation of heat energy. The numerical results are presented and discussed for the range of these conditions: Re = 10 to 40, Ri = 0 to 2 at fixed value of Prandtl number of Pr = 1 and at fixed geometrical configuration. In order to analyze the effect of thermal buoyancy on fluid flow and heat transfer characteristics the main results are illustrated in terms of streamline and isotherm contours. The total drag coefficient as well as average Nusselt number of each cylinder are also computed to determine exactly the effect of buoyancy strength on hydrodynamic force and heat transfer evacuation of each cylinder.


Author(s):  
Dieter E. Bohn ◽  
Volker J. Becker ◽  
Karsten A. Kusterer ◽  
Yokiu Otsuki ◽  
Takao Sugimoto ◽  
...  

Modern cooling configurations for turbine blades include complex serpentine-shaped cooling channel geometries for internal-forced convective cooling. The channels are ribbed in order to enhance the convective beat transfer. The design of such cooling configurations is within the power of modem CFD-codes with combined heat transfer analysis in solid body regions. One approach is the conjugate fluid flow and heat transfer solver, CHT-Flow, developed at the Institute of Steam and Gas Turbines, Aachen University of Technology. It takes into account of the mutual influences of internal and external fluid flow and heat transfer. The strategy of the procedure is based on a multi-block-technique and a direct coupling module for fluid flow regions and solid body regions. The configuration under investigation in the present paper is based on a test design of a convective cooled turbine blade with serpentine-shaped cooling passages and cooling gas ejection at the blade tip and the trailing edge. The numerical investigations focus on secondary flow phenomena in the ducts and on the heat transfer analysis at the cooling channel walls. In the first part, the cooling channels are investigated with adiabatic smooth & ribbed walls. The calculations are carried out for the stationary and rotating configuration. Concerning the heat transfer analysis, the results of the ribbed configuration with a fixed thermal boundary condition at the walls in the stationary case are presented. Furthermore, in order to demonstrate the capability of the conjugate method to work without thermal boundary conditions, the cooling configuration is calculated including the external blade flow and the blade walls with internal and external heat transfer under typical operation conditions of gas turbines. The numerical code is used to determine the blade surface temperatures.


2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Basanta Kumar Rana ◽  
Bhajneet Singh ◽  
Jnana Ranjan Senapati

Abstract Numerical investigations are performed on natural and mixed convection around stationary and rotating vertical heated hollow cylinder with negligible wall thickness suspended in the air. The fluid flow and heat transfer characterization around the hollow cylinder are obtained by varying the following parameters, namely, Rayleigh number (Ra), Reynolds number (ReD), and cylindrical aspect ratio (L/D). The heat transfer quantities are estimated by varying the Rayleigh number (Ra) from 104 to 108 and aspect ratio (L/D) ranging from 1 to 20. Steady mixed convection with active rotation of hollow vertical cylinder is further studied by varying the Reynolds number (ReD) from 0 to 2100. The velocity vectors and temperature contours are shown in order to understand the fluid flow and heat transfer around the vertical hollow cylinder for both rotating and nonrotating cases. The surface average Nusselt number trends are presented for various instances of Ra, ReD, and L/D and found out that the higher rate of heat loss from the cylinder wall occurs at high Ra, low L/D (short cylinder) and high ReD.


2019 ◽  
Vol 26 (5) ◽  
pp. 1099-1115 ◽  
Author(s):  
Hamid Maleki ◽  
Jalal Alsarraf ◽  
Abbas Moghanizadeh ◽  
Hassan Hajabdollahi ◽  
Mohammad Reza Safaei

Sign in / Sign up

Export Citation Format

Share Document